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Abstract

Cognitive radios allow the possibility of increasing utilization of the wireless spectrum,

but because of their dynamic access nature require new techniques for establishing

and joining networks, these are known as rendezvous. Existing rendezvous algorithms

assume that rendezvous can be completed in a single round or hop of time. However,

cognitive radio networks utilizing frequency hopping that is too fast for synchroniza-

tion packets to be exchanged in a single hop require a rendezvous algorithm that

supports multiple hop rendezvous. We propose the Multiple Hop (MH) rendezvous

algorithm based on a pre-shared sequence of random numbers, bounded timing dif-

ferences, and similar channel lists to successfully match a percentage of hops. It is

tested in simulation against other well known rendezvous algorithms and implemented

in GNU Radio for the HackRF One. We found from the results of our simulation

testing that at 100 hops per second the MH algorithm is faster than other tested

algorithms at 50 or more channels with timing ±50 milliseconds, at 250 or more

channels with timing ±500 milliseconds, and at 2000 channels with timing ±5000

milliseconds. In an asymmetric environment with 100 hops per second, a 500 mil-

lisecond timing difference, and 1000 channels the MH algorithm was faster than other

tested algorithms as long as the channel overlap was 35% or higher for a 50% required

packet success to complete rendezvous. We recommend the Multihop algorithm for

use cases with a fast frequency hop rate and a slow data transmission rate requiring

multiple hops to rendezvous or use cases where the channel count equals or exceeds

250 channels, as long as timing data is available and all of the radios to be connected

to the network can be pre-loaded with a shared seed.
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MULTIHOP RENDEZVOUS ALGORITHM FOR FREQUENCY HOPPING

COGNITIVE RADIO NETWORKS

I. Introduction

Background.

Radios have been experimented with since 1887, when Heinrich Rudolf Hertz con-

firmed Maxwell’s electromagnetic theory and was the first to transmit and receive

radio waves [15]. Radios have since then evolved to become sophisticated communi-

cation devices, among other purposes, and underlie all modern U.S. military tactical

communications. From the private talking to his squad leader over a hand-held FM

transceiver to the brigade commander utilizing radio waves to communicate with

satellites and bring access to the entire internet down to the battlefield, radio waves

are essential to military communications [10]. However, wireless spectrum is a limited

resource in which all of the prime real estate has already been allocated for purposes

such as TV broadcasting and cellular phones [34].

Cognitive radios were first introduced by Joseph Mitola [25, 26] as smarter, more

capable radio system. In particular, he defined them to be self-aware and to have

a cognition cycle. The self-awareness means each radio can know about its own

processes, functions, and current state. This allows a network to ask a question such

as “How many distinguishable multipath components are in your location?” [26,

p.45] and actually be able to receive an answer from each of its components. The

cognition cycle is defined as a way of interacting with the environment and responding

to external stimuli, through the OODA loop for example [26, 22].
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Motivation.

Cognitive radios today offer the potential to increase utilization of the wireless

spectrum to extend the reach and bandwidth of radio communications. The basis for

this increased utilization is to allow currently licensed spectrum to be shared with

secondary users whenever that space is available. Users are categorized as primary

and secondary users. Primary users are those who have licensed the spectrum and

have priority access to use that spectrum whenever they want without interference.

Secondary users are anyone else that wants to use that space in the spectrum. The

secondary user can utilize a channel whenever the primary user is not currently using

it, but must vacate the channel whenever the primary user begins using it again.

There is a lot of spectrum currently assigned but not being utilized fully, such as the

VHF and UHF bands currently occupied by broadcast television [1]. The cognitive

radio enables this primary/secondary user paradigm by observing the local wireless

spectrum and choosing the channels that are best at that particular moment for

communication, i.e. channels that are currently unoccupied and free of interference

[22]. This is also known as dynamic spectrum access [37, 8].

Before any two radios can communicate, they must first find each other among all

of the possible channels; this is known as rendezvous [7]. For traditional radios the

problem is easy; the frequency is decided upon before use and all of the radios agree

on which channels to use. However, in a cognitive radio used by secondary users the

set of available channels can change frequently and the radios must be able to adapt

quickly in order to avoid interfering with the primary user and to take advantage

of better channels as they become free. Therefore, any radio that attempts to join

a cognitive radio network must be able to find or predict the current channel being

used by the network. Most existing rendezvous algorithms assume that two radios

can search for each other and that rendezvous synchronization is complete when both
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radios arrive at the same channel at the same time [18, 6, 32, 31, 19, 4, 17, 5, 23, 29, 20].

However, if the network is utilizing frequency hopping with a fast enough rate that

the rendezvous cannot be completed in a single hop, then those algorithms will not

work.

Many rendezvous algorithms also require a completely deterministic hopping se-

quence on both the part of the joining radio and the network for rendezvous to occur

[18, 31, 17]. This allows a hostile radio to potentially predict and intercept or jam

communications and rendezvous attempts [27, 23].

Research Objectives.

Specifically, this thesis is focused on developing an algorithm that allows a cog-

nitive radio to join an already established frequency hopping network in which syn-

chronization requires more than one hop. Additionally, the algorithm must create a

hopping sequence that is secure against interception and jamming from a potential

attacker.

Research Questions.

There are two specific measures of success that this thesis will use to judge results:

1. Does the proposed algorithm successfully allow a cognitive radio to rendezvous

and join a frequency hopping network under real world conditions?

2. Does the proposed algorithm have a faster mean time to rendezvous than ex-

isting algorithms?

Proposed Multihop Algorithm.

To solve that problem, this thesis introduces the Multihop (MH) rendezvous al-

gorithm designed to allow a radio to join an operating frequency hopping cognitive
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radio network without the network having to explicitly attempt a rendezvous and for

the synchronization process to occur over multiple hops. It is based on generating an

identical sequence of random numbers in each radio to allow choosing similar channels

in the same order on each radio and using bounded timing data to limit the search

space required for a radio to locate the network. The cost of the MH algorithm is

that it is no longer blind; it requires a random number sequence or a random number

generator with a seed to be shared to all of the radios that will be in the network

before rendezvous is attempted. Additionally, the radios must having timing data

with a known bound on the maximum difference in timing data between any two

radios, e.g. they must all be within 1 second of the current time. The envisioned use

case for the MH algorithm is when symmetric key encryption is already being utilized

for protecting the privacy of communications over the network, and the additional

data required by MH can be loaded at the same time as the radios are receiving their

encryption keys, such as a military network.

Organization.

This thesis is organized as follows. Chapter II covers previously published ren-

dezvous algorithms for cognitive radios from the literature. Chapter III covers the full

explanation of the Multihop algorithm and an analysis of its running time. Chapter

IV has the simulation setup and results. Chapter V contains the results of imple-

menting the algorithm into GNU Radio based hardware. We discuss the results of

my analysis and consider future work in chapter VI.
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II. Literature Review

Current cognitive radio rendezvous algorithms can be broken down into several

categories. The first is whether they are centralized or decentralized. Centralized

algorithms use either a centralized controller or common control channel (CCC) or

both [9]. These have the advantage of being simple to implement; just contact the

known server over the pre-defined control channel and request to join the network,

for example. However, centralized algorithms are problematic for cognitive radios

because a central controller creates a single point of failure for the entire network, and

common control channels require either licensing expensive frequency bands or using

unlicensed bands that are already heavily congested with other traffic. Decentralized

algorithms are simply those which do not utilize a central controller or common

control channel, and are also known as blind rendezvous.

Decentralized algorithms break down further based on whether they are probabilis-

tic or deterministic and whether they support symmetric or asymmetric environments

[19]. Probabilistic algorithms will rendezvous eventually, but do not provide a bound

on the maximum time to rendezvous. Deterministic algorithms do provide a bound,

but only on the assumption that the environment is static [23].

Radio environments can be modeled as either symmetric or asymmetric. Sym-

metric environments are those in which all radios see the same set of channels while

asymmetric allows each radio to have its own set of channels. In an asymmetric envi-

ronment, some subset of the channels must be overlapping between all of the radios,

otherwise it would be impossible for any sort of communication to occur at all. All

asymmetric algorithms can function in a symmetric environment but the reverse does

not hold true.

However, all of the described algorithms below implicitly or explicitly assume the

frequency hopping rate is slow enough that several packets can be transmitted on
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each channel before hopping to the next. Most algorithms do not define any sort of

handshaking mechanism at all and assume that rendezvous has been completed once

two radios are on the same channel at the same time.

The most important metric for measuring the performance of a rendezvous algo-

rithm is the time-to-rendezvous (TTR). All algorithms attempt to minimize both the

average and worst case TTR values, but many algorithms are probabilistic in nature

and have an unbounded TTR. The TTR is usually measured in discrete time slots or

rounds. For example, taken from the Jump-Stay algorithm:

Since time synchronization is not available in the network, the same time
slot of two CH sequences means that the overlap of two time slots is
sufficient to complete all necessary steps for rendezvous. [18]

This assumption is either implicit or explicit in nearly all other published rendezvous

algorithms as well, with the important point that a time slot is large enough “to

complete all necessary steps for rendezvous”. The proposed MH algorithm explicitly

assumes that time slots are too small for rendezvous to occur and therefore multiple

time slots in a short period of time will be required for rendezvous to complete.

Centralized Algorithms.

The HC-MAC algorithm proposed by Jia et al. assume that a CCC is available for

exchange of control messages and coordination between secondary users [12]. Ma et

al. proposed the Dynamic Open Spectrum Sharing MAC protocol for wireless ad hoc

networks which utilizes a common control channel to simplify the design of the radio

receiver [21]. Both of these approaches are specifically global CCCs, which are the

least feasible option due to the congestion of unlicensed bands. Other designs establish

local CCCs with cluster systems. In particular, the distributed coordination approach

by Zhao et al. [36] and Spectrum-Opportunity Clustering by Lazos et al. [16]. The
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difference between these two algorithms is that the distributed coordination approach

minimizes the total number of control channels required to link the entire network

while the Spectrum-Opportunity Clustering attempts to balance maximizing the set

of common channels within each cluster and maximizing cluster size. Local CCCs

are more reliable than a global CCC, but there is a substantial overhead required to

establish and maintain the CCC [19].

Decentralized / Blind Algorithms.

The majority of published algorithms fall into this category, largely because they

do not assume any sort of common control channel is available and the algorithm

can be applied to a much larger range of situations. Of those, there are a couple of

algorithms that utilize time synchronization like the proposed Multihop Algorithm.

The first is the Slotted Seeded Channel Hopping (SSCH) designed for 802.11 Ad-

Hoc Wireless networks, but it also works for symmetric models of cognitive radio

networks [2]. The second is the set of quorum systems proposed by Bian et al., M-

QCH and L-QCH. M-QCH minimizes the maximum TTR while L-QCH minimizes

the channel load [4]. However, the M-QCH and L-QCH systems require exact time-

synchronization, as opposed to the proposed MH algorithm which only requires a

bounded time difference. Bian et al. also introduced the A-QCH system which is

asynchronous and does not require any clock synchronization, but it only works for

a pair of searching radios and requires both radios to be searching the sequence.

Probabilistic Algorithms.

The simplest probabilistic algorithm is to be purely random; pick a channel, check

to see if anyone is there, and then pick a new random channel [32]. As long as at least

one channel overlaps between the radios attempting to rendezvous then they will all
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eventually land on the same channel at the same time; however, this does not provide

any guarantees that rendezvous will occur in a finite quantity of time. Another

probabilistic algorithm by Theis et al.[32, 33] is the Modular Clock (MC) algorithm

and the Modified Modular Clock (MMC) algorithm for symmetric and asymmetric

models, respectively. Being probabilistic means that they have a deterministic design

based on the Chinese Remainder Theorem, but choose initialization variables with a

pseudo-random generator. If two radios choose the same rates of advancement and

prime value for modulus arithmetic then they will be unable to synchronize until

timeout occurs and different variables are chosen. The MC and MMC algorithms

both work based on modular arithmetic, in particular by picking a prime number

pi and random rate of advancement, then channel skipping forward and using the

mod operation whenever the prime number is reached to loop back to the beginning.

The MC algorithm can guarantee rendezvous will occur in less than pi steps and

the MMC algorithm in less than p1 ∗ p2 steps, assuming that the two radios choose

different random rates of advancement. If rendezvous doesn’t occur within 2p steps

or 2p2i respectively then both radios pick new rates of advancement and try again.

Because of the possibility of picking the same rate of advancement repeatedly, neither

MC nor MMC can provide a guaranteed bound on runtime. However, the larger the

number of channels, the less likely that issue is to occur.

Misic et al. introduced an adaptation of a cognitive Media Access Control (MAC)

protocol [24, 23]. The MAC protocol and rendezvous algorithm function by having a

coordinator that reserves time blocks to transmit extra packets on regular intervals,

which include necessary network function information, including the next channel in

the hop. This allows any radios wishing to join the network the ability to either wait

on a channel for the network to hop there or search channels looking for the network;

once the joining radio sees at least the trail end of a sequence of packets, it knows
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where the network is hopping to next and can follow and send a request to join.

Additionally, if no network is found, then the radio can start its own by beginning to

broadcast the necessary control packets with each hop. This algorithm is particularly

advantageous in that it incorporates rendezvous capability into normal operation of

the radio with no need to stop data transmission to initiate a rendezvous search phase

to allow additional radios to join.

AMRCC [6] is a random based algorithm which allows for weighting the chan-

nels so that preferred channels are more likely to be selected using a pseudo-random

number sequence. This algorithm operates in two phases: sensing and handshaking.

During the sensing phase each radio analyzes the noise level of each channel and builds

a channel ranking table where the best channels (least primary user activity) have

a lower index and worse channels have a higher index. Then the radio generates a

pseudo-random sequence containing values ranged [1,n] with a bias towards the lower

values. Therefore, channels with less interference are more likely to be selected. The

output of this routine is an adaptive hopping sequence with pseudo-random values

mapped 1 to 1 over the ranking table. Then the algorithm begins phase 2, handshak-

ing. During this phase the radio sends a request to send (RTS) packet on each channel

it hops into, and if the intended receiver is on the same channel at that time then

the receiver responds with a clear to send (CTS) packet and rendezvous is complete.

Then the two radios can exchange SYNC packets to synchronize future hops, which

would contain ranking tables and the seed for the pseudo-random sequence.

Deterministic Algorithms.

Two well-known deterministic algorithms are Jump-Stay and Enhanced Jump-

Stay. Both algorithms work by generating channel hopping sequences in rounds,

where each round consists of a jump pattern and a stay pattern. The jump pattern
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is similar in principal to the Modular Clock algorithm but is constructed so that

overlap between two radios is guaranteed on every channel without being dependent

on choosing different prime values. Enhanced Jump-Stay is a variation which improves

the asymmetric performance by increasing the time spent in jump mode rather than

stay mode, but it has slightly worse performance in symmetric models relative to

Jump-Stay. During the jump pattern, the user is constantly hopping to different

frequencies and attempting rendezvous, which lasts three times longer than the stay

pattern during which the user just waits to see if another user jumps there. For

Enhanced Jump-Stay under the symmetric model, rendezvous is guaranteed to occur

at most 4P timeslots where P is the smallest prime number greater than the number

of channels. And under the asymmetric model, rendezvous is guaranteed to occur

in at most 4P (P + 1G) timeslots where G is the number of channels in common

to both users [18, 17]. This algorithm is advantageous in that it operates under an

asymmetric model but has a symmetric level of performance in a symmetric model;

however, the disadvantage is that this algorithm implicitly requires a shared global

labeling of channels.

In addition, an enemy attempting jamming who knows that Jump-Stay is being

utilized can easily defeat Jump-Stay due to the entirely deterministic nature of the

algorithm. It has been shown in simulations that Jump-Stay can be reduced from a

100% to less than a 20% chance of rendezvous if being actively jammed by just one

listener [27]. Rezaei et al. have studied the Nested Grid Quorum-Based Frequency

Hopping (NGQFH) algorithm and found that it is also susceptible to jamming but can

be enhanced to be jamming resistant by adding a probability of performing a random

channel selection. Furthermore, Misic et al. [23] have argued that any deterministic

blind rendezvous algorithm can fail to rendezvous in bounded time if rendezvous is

interrupted either through intentional jamming or accidental interference by other
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users.

The Deterministic Rendezvous Sequence (DRSEQ) by Yang et al. [35] works by

generating a k-shift-invariant sequence shared by all of the radios in teh system. For

any two k and k′ starting positions, after some increment i the sequence will overlap

itself: f(k + i) = f(k′ + i). The sequence is generated deterministically based upon

the total number of channels available, with no randomness utilized at all. A related

algorithm is the Channel Rendezvous Sequence (CRSEQ) [31] which is based on the

properties of triangular numbers and modulus to generate a sequence of subsequences

that is guaranteed to overlap a common channel if such exists as long as the other

radio is also running a similarly generated search sequence.

Random Number Generators.

For algorithms which rely on a random number generator to select channels the

pseudo-random number sequence must be cryptographically secure if the algorithm

wants to prevent interception and possible jamming. Common random number gener-

ators based on a linear congruential method as described by Knuth[13], such as found

in Java.util.Random and C# System.Random, are not cryptographically secure as

shown by Krawczyk [14]. The most well known source of cryptographically secure

pseudo-random number generators (CSPRNG) is the U.S. Department of Commerce

National Institute of Standards and Technology publication NIST SP 800-90A [3]. It

contains several different random number generators, among them DUAL EC DRBG

has been found to be insecure [30], but HMAC DRBG has been studied and found

to be secure, so far [11].
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III. Multihop Algorithm Analysis

The premise of the MH algorithm is that each radio can generate an identical

deterministic sequence of random numbers from a shared seed, allowing each radio

to independently select the same channel if they share the same list of channels to

choose from and share timing information. In an asymmetric environment there is no

guarantee that both radios have the same list of channels, but as long as the list is

similar and the generated numbers the same then the algorithm can still successfully

rendezvous. The algorithm synchronizes the time of the joining radio to the network

by searching a fixed window size of possible channels in which the network could be

based on the current time.

The state diagram of the algorithm is provided in figure 1, and pseudo-code for

each of the states is provided by Algorithms 1 and 2. Full Java code for the simulator

used to test the algorithm is provided in Appendix A and the C++ code used to

demonstrate the algorithm on GNU Radio Hardware is provided in Appendix B.

Multihop Algorithm Design.

The MH algorithm operates in four phases: sensing, seeking, synchronizing, and

network communication.

Sensing.

During the sensing phase each radio looks at each channel in its local environment

and builds a channel ranking table based on any preferred factors, the specific factors

used do not matter so long as there is a small difference between the ranking table

of each radio. Once that is complete each radio begins creating a hopping sequence

utilizing their shared seed, such that every radio generates the same hopping sequence

but each over their unique channel ranking table. Each radio creates a sliding window
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of channels, with the size of the window determined by a fixed maximum difference

between radio clocks. The starting index is at the 50% position of the window. One

radio can be designated by the operator as a master to the network and it immediately

jumps to the network communication phase in order to allow other radios to join this

radio and create a network, but this is not required if timeout fail-over intervals are

utilized in the seeking phase. All other radios immediately move to the seeking phase.

Seeking.

The joining radios begin seeking for the network by scanning through the sliding

window of channels. If a radio in the seeking phase detects a transmission from the

network, then that radio knows the timing of the network based on its current position

in the sliding window and immediately begins the synchronization phase. If a fail-over

timeout is reached then there are no networks to join and this radio transitions to

network communication to establish its own network.

Synchronization.

The synchronization phase consists of frequency hopping forward at the same

rate and generating the same RNG values as the network. Over the course of the

next series of hops the joining radio will broadcast a request to join and the network

responds with a synchronization transmission containing the channel ranking table of

the network. If the timing synchronization of seeking was successful and it was not

a false positive, then as long as the differences between the channel ranking tables

of the joining radio and the network are smaller than the ratio of successful to total

hops then the rendezvous will be successful with high probability and the radio can

move to the network communication phase.

The synchronization phase assumes that some sort of error correcting code such
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as Reed-Solomon [28] will be utilized at the data link levels of the radio for data

transmission. This allows the MH algorithm to assume that transmitting x successful

packets out of y total packets will be sufficient for rendezvous to complete. Otherwise

the MH algorithm would require z consecutive successful rendezvous attempts. This

would not break the MH algorithm but would make rendezvous much more difficult.

Network Communication.

Once the synchronization packet is received the joining radio can transition to

the network communication phase and begin passing user data over the network.

The joined radio has now established timing and synchronized to the communication

channels the network is using, allowing the joined radio to accurately predict future

network hops for as long as conditions remain static.

Timing Synchronization Analysis.

During the Seeking Rendezvous phase of the MH algorithm, the joining radio will

be offset in timing from the network by up to M milliseconds. The current number of

milliseconds since beginning the search is represented by t. The network is hopping

at a fixed rate of S ms/hop and the joining radio is searching at a rate of S ′ ms/hop.

The search is complete when the value of t is such that the current network hop is
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Figure 1. State Machine Diagram for Multiple Hop Algorithm using Network Master
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Algorithm 1 Multihop Rendezvous Algorithm

function Sensing(seed)
for Each channel in the available spectrum do

Measure noise
if Primary user not present then

Add channel to a sorted list
end if

end for
Initialize CSPRNG with seed value
hops← current time / hop rate . Calculate how many hops are needed
while hops > 0 do . to bring the CSPRNG up to now

hops← hops− 1
Cycle CSPRNG

end while
Initialize sliding window array with a size based on hop rate and clock accuracy
sliding window index← sliding window.size()/2
round← 0
last window update← 0
timeout← 0
Call Seeking

end function
function Seeking

Call HopForward
if Network activity detected on channel list[sliding window[sliding window index]]

then
Call Syncing

else
Call Seeking

end if
end function
function HopForward

round← round+ 1 . Slide the sliding window forward
while last window update ≤ round do

sliding window[last window update] ← CSPRNG.next int() mod chan-
nel list.size()

last window update ← (last window update + 1) mod slid-
ing window.size()

end while
end function
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Algorithm 2 Multihop Rendezvous Algorithm Continued

function Syncing
Call HopForward
sliding window index← sliding window index+ 1
if Network activity detected on channel list[sliding window[sliding window index]]

then
Attempt or Continue Rendezvous

end if
if Rendezvous Complete then

Update channel list with network channels
Call Network

else
timeout← timeout+ 1

end if
if timeout exceeded threshold then

timeout← 0
Call Seeking

end if
end function
function Network

Call HopForward
while Still connected to network do

Communicate with network
end while
Call Sensing . Disconnected, begin rendezvous from beginning

end function
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Therefore, the search will be complete in t ms, where t is equal to the offset times

the joining radio search speed divided by the difference in search speeds between

the joining radio and network. Furthermore, this analysis highlights the fact that if

S = S ′ then it is impossible for the radios to close the gap in timing to synchronize.

Additionally, if S ′ = 0 then the joining radio can search all channels instantaneously

or if M = 0 then the joining radio has already synchronized. However, this analysis

assumes that no false positives can occur during the seeking process and that both

radios are hopping in exactly the same pattern. A violation of the first assumption

occurs when both radios land on the same channel but at different points in the

hopping sequence. This probability is increased if the number of channels available is

small. Every occurrence of such a violation creates a delay in timing synchronization

as both radios will begin hopping at the S rate until timeout occurs.

Violations of the second assumption only matter if they occur at time t, if that

occurs then timing synchronization has failed during this iteration but the search

occurs over a finite period of time W , where W ≥M , and will therefore loop around
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and can be solved using the same equation with W replacing M . However, this means

that synchronization time is unbounded if violations of the second type occur at every

point where the hops are equal.

Window Search Size.

The previous section assumes that the network is always ahead of the joining radio

when searching, and the algorithm utilizes a sliding window to allow for a wraparound

effect during the search in order to support that assumption. However, the radios can

start up to M ′ milliseconds apart, therefore up to M ′/S indices in the sliding window

can be different due to the offset in timing between the radios and if W = M ′/S then

it is possible for synchronization to never occur. Therefore, the sliding window size is

2 ∗M ′/S + 1hops with a starting index in the center of the sliding window, allowing

the joining radio to search for both forward and backward offsets.

The use of two different search rates over a finite space guarantees that any two

radios will eventually intersect at a single point in that search space, but if each radio

has mapped that point to a different channel then the sliding window fails.

Security.

The algorithm follows Kerchoff’s principle in design by publicizing everything ex-

cept the key. The key in this case is the secret pre-shared seed used for the CSPRNG.

As long as the algorithm uses a cryptographically secure random number generator

then an adversary will not be able to predict future hops based on available in-

formation without access to the private seed, because the numbers generated by the

CSPRNG directly translate into channels selected for hopping. The specific CSPRNG

used is not important to the algorithm, only that it generates random numbers se-

curely.
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Run time analysis.

Sensing.

During the sensing phase the algorithm requires performing an examination of

each possible channel to determine if it will be used or not. This is an O(c) search

where c is the total number of channels and it is limited solely by the speed of the

hardware in tuning and examining each channel.

Seeking.

The network is frequency hopping forward in time at a fixed rate. Therefore,

assuming the joining radio requires an entire hop round to identify the network, the

joining radio can search at the maximum possible rate by holding a single position

in the sliding window and waiting for the network to hit that position. This is a n/2

required time to search on average where n is the size of the sliding window. If there

is a false positive then there is a delay until the timeout in the next stage is hit and

this stage can pickup where it left off, this value is defined as β. The probability of

a false positive on each hop is 1/c, creating a β/c additional expected delay on each

hop due to false positives. Creating a total run time of n/2 + (n/2) ∗ (β/c) for a

symmetric environment, which suggests that the runtime will actually decrease with

a large channel count but increase linearly with the window size and β value.

Furthermore, if the environment is asymmetric then there is a probability that

the search will align on an index in which the joining radio has the wrong channel

and this will cause a delay of size n additional hops. The probability of this missed

channel case occurring on any given attempt at rendezvous is 1 − p where p is the

overlap percentage of channels between 0.0 and 1.0, with a repeat chance for every

failure. Therefore, the total number of expected cycles is 1
p
, e.g. if p = .25 then it will

take 4 cycles on average for timing synchronization to succeed. The total delay caused
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by this is therefore n
p
. As p approaches zero, the total expected rounds will approach

infinity. This gives a final asymmetric seeking runtime of n/2p+ (n/2p)(β/c).

The asymmetric missed channel case could be mitigated by setting the joining

radio to search the sliding window as well. For example, if the joining radio searches

at half the network frequency hop speed then the joining radio will have two chances

to rendezvous instead of one but will also take n instead of n/2 hops for the joining

radio to match the index of the network. The closer the joining radio gets to the

network hop speed, the worse the non-missed channel case becomes. At (n−1)/n the

search is n2/2, and if timing is performed in real time as opposed to integer frequency

hop rounds, then as the joining radio search speed approaches the network hop speed

the time to rendezvous approaches ∞.

Syncing.

This process is limited by the specifics of the hardware and actual transmission

data mechanisms. Some number of successful rendezvous attempts (α) will be re-

quired out of a total number of attempts (β) before failure and timeout. In the

symmetric environment, these values are a constant, except in the false positive case

dealt with in the seeking phase analysis above.

In the asymmetric environment there is a probability that rendezvous will fail

even though timing was successfully synchronized. Again p represents the overlap

percentage between channels. The joining radio will generate β attempts, a required

α number of successes, and a p probability that any given attempt will succeed. This

leads to a Bernoulli trials formula of b(α, β, p) = β!
α!∗(β−α)! ∗ p

α ∗ (1− p)β−α. However,

that only gives the probability of exactly α successes and β−α failures out of β trials,

where this actually only requires at least α successes. Therefore, the easiest way to

calculate it is to compute b(0, β, p) through b(α − 1, β, p) to find the probability of
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failure then subtract that from 1. Giving a final probability of 1 −
∑α−1

x=0 b(x, β, p).

Therefore, this phase will require n/(1−
∑α−1

x=0 b(x, β, p)) total hops.

Network.

In this phase the algorithm is considered complete as rendezvous has already

occurred.

Conclusions.

The algorithm is guaranteed to rendezvous eventually so long as there are at least

α overlapping channels and the window size is correctly set to twice the maximum

bound of timing offset between any two radios in the network.

On average, in a symmetric environment, the MH algorithm will take n/2 ∗ (1 +

β/c)+α hops to rendezvous, or simply O(n) where n is the size of the sliding window.

There is an additional O(c) initialization factor, but this can run at the maximum

speed of the radio processor as opposed to being limited by the frequency hop rate

and will have minimal impact relative to the O(n) timing for any realistic value of c.

In an asymmetric environment the MH algorithm will take

(
n

2
+ n ∗

(1

p
− 1
)

+
n

p
∗
( 1

1−
∑α−1

x=0 b(x, β, p)
− 1
))
∗
(

1 +
β

c

)
+ α

hops where n is the size of the sliding window, p is the overlap percentage of channels

between 0.0 < p < 1.0, c is the total number of channels, and b is a function repre-

senting a Bernoulli trial as described in Syncing above. As the overlapping number of

channels approaches zero, the asymmetric rendezvous time approaches infinity. That

formula is backwards compatible with symmetric environments as well where p = 1.0.

The formula is validated successfully against simulation results in chapter IV.
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IV. Simulation Setup and Results

Objectives.

This simulation based experiment measures the mean time to rendezvous of the

MH algorithm against other rendezvous algorithms from the literature in different

environmental conditions. Additionally, the simulation determines the failure rate of

the algorithm, where failure is defined as reaching 100,000 rounds without successfully

completing rendezvous.

Assumptions.

The following assumptions are made in the setup of the simulation: An entire

network of radios can be modeled as a single radio because every radio in the network

would have identical parameters. Timing can be represented as a discrete round

or time slot, equal to the length of a single frequency hop in the network. Radio

hardware is abstracted away and would be capable of supporting all of the required

operations of the algorithm. All radios have a pre-shared randomly generated seed.

One radio has been configured by a user as a master to initialize the network. There is

no interference or jamming present. All channels are identical in performance. Each

radio has the same number of channels available. Channels do not change, appear, or

disappear for the duration of the simulation. All radios are within a bounded clock

time of each other, i.e. the difference between any pair of radios is no greater than X

milliseconds, which has been represented by a maximum number of rounds of offset.

The clock of each radio will not drift for the duration of the simulation.
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Response Variables.

The measured response variable for this simulation is the number of rounds be-

tween the start of the simulation and the completion of the rendezvous of the new

radio into an existing network

Control Variables.

The control variables for these simulation experiments are: The total number of

channels available per radio. The number of channels that are not shared by all

of the radios in the simulation, must be less than the total number of channels for

rendezvous to occur and should improve performance as the number decreases. The

maximum difference in clock timing between each radio, set to a constant factor of 5

rounds, the larger the number the easier input is for the operator but the larger the

sliding window becomes.

Constant Factors.

The factors being held constant for these simulatin experiments are: The number

of radios, fixed at 2 radios because one radio represents the entire existing network

and the other radio is attempting to join the network. The number of hops required

to synchronize successfully, in real hardware is a function of the amount of data and

the data transmission rate. Number of synchronization hops before timeout, set to

twice the number of hops required to synchronize successfully, once synchronization

begins a timeout is required to allow for failure recovery and re-acquisition of the net-

Table 1. Response Variables

Response Variable Normal Level Precision Relationship to Objective
Time to rendezvous 0-1000 ms 1 ms based on

simulation clock
Estimate mean and stan-
dard deviation
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Table 2. Control Variables

Control Variable Normal
Level

Precision Proposed
Settings

Predicted Effects

Channels per ra-
dio

10-50 1 channel [10, 20, 30,
40, 50, 60,
70, 80, 90,
100, 250,
500, 750,
1000]

Increasing the number of
channels will increase the
time taken to rendezvous
until it exceeds the sliding
window size

Non-overlapping
channels

Unknown 1 channel [1, 5, 10,
500]

Increasing the number of
non-overlapping channels
will increase the time taken
to rendezvous

Clock bound dif-
ference

500ms 1 ms [50ms,
500ms,
5000ms]

Will increase the time taken
for the Multihop algorithm
to rendezvous linearly but
has no impact on other al-
gorithms

work. If this value is too low the algorithm may abort during an otherwise successful

rendezvous attempt, if too high then bandwidth is wasted on coding for the misses

and time wasted on false positives during sliding window searches. Search speed as a

percentage of standard hop speed, due to offset timing (not every radio has identical

timing down to the millisecond), searching the sliding window is required to identify

the timing of the network and the search speed must not be equal to the network

hop speed for overlap to occur. Failure timeout at 100,001 rounds, the cutoff point

at which an algorithm is stopped and labeled as a complete failure to rendezvous.

Table 3. Constant Factors

Factor Desired Level Precision Anticipated Effects
Number of radios 2 1 radio None
Number of hops required to syn-
chronize successfully

10 1 hop None

Timeout hops 20 1 Moderate
Search speed 200% 1% Moderate
Failure timeout 100,001 1 None

25



Simulation Environment.

The source code is included in Appendix A and an additional copy of the source

and inputs to the simulation along with the collected raw data is available on GitHub

at https://github.com/tinamil/CR-Simulator It is being executed on the Java

1.8.25 JRE and Windows 10 x64 on a single workstation running a Core i5-3570K

CPU and 8GB of RAM.

Initial Tests.

First tests were performed to verify whether the MH algorithm worked as expected

and to check the code for implementation bugs. Trial and error determined that 50%

search speed failed entirely initially with 200% and higher search speeds worked as

long as the sliding window was set to the proper 2x+1 value of the maximum offset

and the environment was symmetric. Once the initial sliding index was initialized to

half the sliding window so that the search could go both forward and backwards then

the MH algorithm worked in all cases.

Symmetric Test Results.

The charts in figure 2 and figure 3 provide the mean rounds to achieve rendezvous

of the Multihop algorithm for comparison against the other rendezvous algorithms

from the literature for 10-100 channels and 100-2000 channels. All of the algorithms

were implemented into the same simulation software, with the number of overlapping

channels set to 100%, making the environment symmetric.

The charts in figures 4 through 9 show the results of a Tukey Honest Significant

Difference (HSD) analysis of the Multihop algorithm at each tested window level

against each of the other rendezvous algorithms at each channel level. Jump-Stay

had the consistently best performance, other than MH, at all channel levels tested.
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Figure 2. Logarithmic scale comparison of mean rounds to rendezvous simulation
results for 10-100 channels in a symmetric environment (100% channel overlap). The
Multihop algorithm is tested with window sizes of 10, 100, and 1000 channels.
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Figure 3. Logarithmic scale comparison of mean rounds to rendezvous simulation
results for 100-2000 channels in a symmetric environment (100% channel overlap).
The Multihop algorithm is tested with window sizes of 10, 100, and 1000 channels.
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Specifically JS was always statistically equal or better than other algorithms from

the literature that were tested. The MH-10 algorithm performs worse than JS at 10

channels, equal from 20-40 channels, and better from 50-2000 channels. MH-100 is

worse from 10-100, and better from 250-2000 channels. MH-1000 is worse at 10-750,

equal at 1000, and better at 2000 channels.
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Figure 4. Tukey HSD comparison of Multihop against JS showing the difference in mean
rounds to rendezvous. Error bars show 99% confidence intervals. A value greater than
zero indicates the MH algorithm is slower and a value less than zero indicates the MH
algorithm is faster.
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Figure 5. Tukey HSD comparison of Multihop against EJS showing the difference in
mean rounds to rendezvous. Error bars show 99% confidence intervals. A value greater
than zero indicates the MH algorithm is slower and a value less than zero indicates the
MH algorithm is faster.
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Figure 6. Tukey HSD comparison of Multihop against DRSEQ showing the difference
in mean rounds to rendezvous. Error bars show 99% confidence intervals. A value
greater than zero indicates the MH algorithm is slower and a value less than zero
indicates the MH algorithm is faster.
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Figure 7. Tukey HSD comparison of Multihop against MC showing the difference in
mean rounds to rendezvous. Error bars show 99% confidence intervals. A value greater
than zero indicates the MH algorithm is slower and a value less than zero indicates the
MH algorithm is faster.

33



Figure 8. Tukey HSD comparison of Multihop against MMC showing the difference in
mean rounds to rendezvous. Error bars show 99% confidence intervals. A value greater
than zero indicates the MH algorithm is slower and a value less than zero indicates the
MH algorithm is faster.
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Figure 9. Tukey HSD comparison of Multihop against Random showing the difference
in mean rounds to rendezvous. Error bars show 99% confidence intervals. A value
greater than zero indicates the MH algorithm is slower and a value less than zero
indicates the MH algorithm is faster.
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Asymmetric Test Results.

Initial tests in an asymmetric environment with with 500 channels overlapping of

1000 channels total, but with each channel assigned a random signal strength and

sorted by that strength, showed a < 1% success rate. Chapter III indicates the

algorithm is strongly dependent upon the channel difference rate between each radio,

so I performed a series of tests to determine those channel difference rates for different

asymmetric environments with randomly assigned noise values to each channel used

to sort as opposed to channel IDs. Channel difference rate is measured by performing

a comparison of each table to see if the channels across each radio at the same index

were equal. Table 4 shows two examples of how difference rate measurements work.

The left example is a low difference rate that works because most of the channels are

identical in each row, while the right example has a high difference rate because each

channel in the second row has been offset from the first.

Figure 10 shows the channel difference rate distributions for an asymmetric en-

vironment when sorted by randomly assigned noise. The test was performed by

generating a random noise value for each channel in the range of [0, 1), creating two

radios that each selected 1000 channels, and setting the channel overlap values. The

channel non-overlap values were set to 1, 5, and 10, corresponding to 999, 995, and

990 overlapping channels. Due to the sorting, the larger the difference in noise value

between the non-overlapping channels, the smaller the channel correlation will be.

Using the previous example, if channels [1, 5] have extremely different noise values

then the radios generate [1, 2, 3, 4] and [2, 3, 4, 5], but if [1, 5] have identical noise

Table 4. Example of two different asymmetric difference rate measurements

12.5% Difference
1 2 3 4 5 6 7 8
9 2 3 4 5 6 7 8

100% Difference
1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 9
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Figure 10. Channel correlation values of MH algorithm for 1000 channels in an asym-
metric environment using randomly generated noise values in the range of [0, 1) with 1,
5, and 10 non-overlapping channels.
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values then they would have been placed into the same index generating [1, 2, 3, 4]

and [5, 2, 3, 4].

This suggests that using noise as a sorting method for real world implementation

of the algorithm may not work, especially if dramatically different noise values are

being registered by different radios due to environmental conditions. If there is one

badly misplaced channel then that creates a very large difference between two radios,

which would make rendezvous very unlikely. As shown in the o5 graph in figure 10,

even just 5 out of 1000 channels being different with randomly assigned noise values

creates a mean of a 36% overlap and 64% difference rate. Using the asymmetric

analysis from chapter III, that 36% overlap would require 7.2 ∗ n rounds on average

just to successfully move from the seeking to synchronization phase.

After discovering how badly random noise could perform, this variable was elim-

inated in future tests by explicitly controlling overlap values. Channels were sorted

by channel number instead of noise and assigned channels such that they would have

exact overlap. For example, a 50% overlap with 1000 channels would involve radio 1

having channels 1-1000 and radio 2 having channels 1-500 and 1001-1500.

Figure 11 shows the mean rounds to rendezvous of the Multihop algorithm as

compared against the Random and MMC algorithms, with figures 12 and 13 showing

the statistical differences between the means. The EJS algorithm was the only other

implemented asymmetric rendezvous algorithms, but was not included in this test

because it gave abnormal results by frequently (> 10% of tests) failing to rendezvous

entirely.

The Multihop algorithm performs best relative to the other tested algorithms

when the difference rate was near the α/β ratio, approximately 0.5 for these simu-

lations. Below that point the MH algorithm becomes exponentially worse. In the

other direction, as the overlap percentage improves the MH algorithm improves its
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Figure 11. Logarithmic scale comparison of mean time to rendezvous of the Multihop-
100 algorithm with a window size of 100 compared against the Random and MMC
algorithms at 1000 channels.

runtime, but at a slower rate than the other algorithms.

Timing Validation.

The simulation results of the MH algorithm match the expected results of the

symmetric and asymmetric model runtime analyses. The symmetric and asymmetric

results are presented in figures 14 and 15, respectively. The simulated results do

not always statistically equal the calculated results, with the largest difference being

15.6% between the means at the 65% difference rate, however the results are not

consistently above or below. At 65% difference the simulated results were 15.6%

faster than calculated while at 40% difference the simulated results were 8.4% lower

and the calculated results and would have been within the confidence interval if .995

was used instead of .95. This indicates that the runtime analysis from chapter III is

reliable and can be used to predict performance values for known values of the window
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Figure 12. Tukey HSD comparison of Multihop against MMC showing the difference in
mean rounds to rendezvous. Error bars show 99% confidence intervals. A value greater
than zero indicates the MH algorithm is slower and a value less than zero indicates the
MH algorithm is faster.
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Figure 13. Tukey HSD comparison of Multihop against Random showing the difference
in mean rounds to rendezvous. Error bars show 99% confidence intervals. A value
greater than zero indicates the MH algorithm is slower and a value less than zero
indicates the MH algorithm is faster.
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Figure 14. Comparison of the calculated vs simulated results of the multihop algorithm
using a window size of 100 in a fully symmetric environment. Error bars show 95%
confidence intervals. The rounds to rendezvous converges towards 60 because the
MH100 takes 50 rounds on average (n/2) to seek the timing and 10 rounds (α) to
complete synchronization.
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Figure 15. Logarithmic comparison of the calculated vs simulated results of the mul-
tihop algorithm using a window size of 100, fixed at 1000 channels, for an asymmetric
overlap ranging from 25%-100%. Error bars show 95% confidence intervals.
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size, channel count, percentage overlap, α, and β parameters for the MH algorithm.

Conclusions.

These simulations have shown the potential performance of the Multihop algo-

rithm relative to other well known rendezvous algorithms from the literature. This

addresses the second research questions, specifically “Does the proposed algorithm

have a faster mean time to rendezvous than existing algorithms?” Under certain

conditions, yes, the proposed multihop algorithm does achieve a statistically signifi-

cant faster mean time to rendezvous than existing algorithms. Those conditions are

for small timing bounds and large channel counts, and for asymmetric overlap near

the α/β ratio. Under other conditions, i.e. large timing bounds and small channel

counts, the multihop algorithm performs significantly slower than existing rendezvous

algorithms.

44



V. GNU Radio Hardware

The goals of implementing the Multihop algorithm in hardware are to demonstrate

that the algorithm is viable in real world conditions and to validate the simulation

results. The MH algorithm is being implemented on the HackRF One through the

GNU Radio software.

Transmitter.

Figure 16. The setup of the hardware transmitter as implemented in the GNU Radio
Companion software. The software selects a channel, converts it to a frequency, and
then the signal source generates a sin wave to be transmited to the osmocom Sink block
which feeds those values to the HackRF One radio for transmission over the air.

Figure 16 shows a design implementation of the Multiple Hop algorithm for a

radio set to be the network master. For the purposes of testing the algorithm a

single radio was utilized to act as the network with one radio attempting to join the

network. These specific radios do not easily support actual frequency hopping, so a

digital channelizer is utilized to demonstrate the algorithm. This will have no effect on

the results of any experiments performed except to make the implementation easier.

The transmitting radio constantly sends a carrier wave which represents the channel

current and which changes frequency at the freqhop rate per second.
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Figure 17. The setup of the hardware receiver as implemented in the GNU Radio
Companion software. The osmocom source reads from the HackRF One radio, then
the results are processed through an FFT to find the strongest signal source, converts
that value back into a channel index, and feeds that into the rendezvous algorithm for
comparison to see if the right values were generated.

Receiver.

Figure 17 shows the final implementation of the Multiple Hop algorithm in a join-

ing radio. The receiver reads the carrier wave, converts that into a channel index,

and feeds that into the Multihop Rendezvous algorithm. The algorithm then inde-

pendently generates the channel it is listening to and compares that to the input

channel to see if they match. This demonstrates the algorithm works, and converting

this to an analog frequency hop system is trivial from a design perspective. The

only necessary change is to invert the design so that the Multihop rendezvous block

outputs the channel to which the radio listens.

Hardware.

The full source code for each custom block is included in Appendix B. The FFT,

osmocom, and QT GUI blocks were provided by the GNU Radio Companion software

and the QT GUI Frequency Sinks are only necessary as instrumentation to allow the
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operator to see what is happening in real time. For these experiments the GNU Radio

Companion software was run on two laptops. The transmitting laptop was a Lenovo

Thinkpad T430 with an Intel Core i5-3210M CPU at 2.5GHz and 12 GB of RAM,

running x64 Linux Mint 17.3 inside a VirtualBox VM on Windows 10. The receiving

laptop was a Lenovo Thinkpad Z61t with an Intel Core Duo T2300 CPU at 1.66GHz

and 2GB of RAM, running x86 Linux Mint 17.3. Both laptops were connected via

USB to a HackRF One radio with a 3db antenna attached.

Problems.

Clock skew is a significant problem between these radios. Each radio is set to run

at exactly 2,000,000 samples per second but they will drift by as much as a 20,000

samples every five seconds. It’s not a significant problem to the rendezvous so long

as the drift stays within the bound on time, but it’s an issue that has to be solved

after rendezvous to prevent desynchronization. Additionally, due to the difference

in clocking a manual frequency correction of -10 ppm was required on the receiving

radio to synchronize the frequencies so that the frequency sent was the same as the

frequency received.

Results.

The results of the hardware version of the algorithm as compared to the simulation

results are located in table 5. Results are significantly worse than in simulation.

Table 5. T-test comparison of mean rounds to rendezvous for simulation vs hardware
results for the Multihop Algorithm in a symmetric enviroment with 2000 channels at
100 hops per second.

Window size Simulation Hardware 95% Conf. Interval P-Value
10 15.0659 71.91667 33.6 - 80.1 0.0002213
100 60.356 192.8333 107.6 - 157.4 9.238 ∗ 10−12

1000 516.209 1588.4 869.6 - 1274.8 1.058 ∗ 10−11

47



There are two reasons for this. First, timing is manually controlled and both radios

are started as close as possible together, as opposed to in simulation where each radio

was given a random valid start time. This causes timing to skew towards n rounds as

opposed to n/2 for random start times. Secondly, the startup time required for the

hardware in each radio causes the first potential rendezvous synchronization to fail

as the radios generate garbage data until they have completed startup. This adds an

n factor to any run which misses a rendezvous that it would not have in simulation

due to the imperfect hardware.

The specific size of the sliding window is determined by two factors, the maximum

bound on the difference in clocks between the radios and the frequency hop rate.

However, the algorithm operates at the speed of the frequency hop rate, so increasing

the hop rate does increase the size of the sliding window and therefore the total

number of rounds taken to rendezvous but simultaneously decreases the time spent

in each round by a proportional amount so that the actual wall clock time taken to

rendezvous remains constant. For manual clock timing in which both clocks were

started by the same operator, ±500ms was a good bound on the clock limit for being

reliable, that corresponds to a window size of 100 at the frequency hop rate of 100

hops / second currently being utilized in the digital channelizer. The 50 ms timing

limit of the 10 window size fails to rendezvous about 60% of the time due to the limits

of human accuracy and the fact that the computers are running at different speeds

and take different amounts of time to initialize the hardware and start the rendezvous

sequence.

Table 6. T-test comparison of mean rounds to rendezvous for simulation vs hardware
results for the Modular Clock (MC) Algorithm in a symmetric enviroment with 50
channels at 1 hop per second.

Simulation Hardware 95% Conf. Interval P-Value
27.9264 39.0 .802 - 21.35 0.03546
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For comparison, the Modular Clock (MC) alrgorithm was implemented in hard-

ware as well using the reference implementation published by Theis [33] and the

results are presented in table 6. The Modular Clock algorithm hardware implemen-

tation is also slower than the simulation implementation, but only by approximately

40% whereas the Multihop algorithm was closer to 300% slower. The largest differ-

ence between the two hardware tests, Modular Clock against Multihop, is that the

MC algorithm was only tested at 1 hop per second while the MH algorithm was tested

at 100 hops per second. The Modular Clock algorithm was tested at only 1 hop per

second because that algorithm was too slow at generating hop sequences to be tested

at a faster rate using the specific implemenation provided by Theis for generating

random numbers. The effect of this difference is that a fixed amount of startup time

inherent in each radio means that the Modular Clock algorithm has gone through far

fewer hops than the Multihop algorithm.

Hardware conclusions.

This demonstrates that the Multihop algorithm can feasibly be implemented into

real world radio hardware, and therefore successfully answers the first research ques-

tion “Does the proposed algorithm successfully allow a cognitive radio to rendezvous

and join a frequency hopping network under real world conditions?” with a yes. Fur-

ther engineering efforts are required to move the system from a prototype to a fully

functioning radio, but this implementation has shown that there are no hidden issues

to prevent the algorithm from being successfully integrated into full cognitive radios.
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VI. Conclusions

Objective.

The research objective of this thesis was to provide an algorithm to allow a cog-

nitive radio to join a network of frequency hopping cognitive radios. It does so by

presenting the Multihop algorithm, showing how it works, and comparing it to exist-

ing rendezvous algorithms.

Criteria for success.

The specific criteria selected for judging the success of the proposed Multihop

algorithm were:

1. Does the proposed algorithm successfully allow a cognitive radio to rendezvous

and join a frequency hopping network under real world conditions?

2. Does the proposed algorithm have a faster mean time to rendezvous than ex-

isting algorithms?

Question 1 was answered by chapter V, which demonstrated the feasibility of the

algorithm by implementing it on a real radio and testing rendezvous through actual

radio transmissions. Question 2 was answered by chapter IV, which showed that the

Multihop algorithm is time dependent where other algorithms are channel dependent.

Therefore, the Multihop algorithm is faster when time differences are small and chan-

nel counts large, while other algorithms are faster when time differences are large and

channel counts small.

Significance.

The Multihop algorithm is the only known algorithm which allows for rendezvous

to occur over multiple successive hops. All other known algorithms are based on
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rendezvous being completed in a single hop. Furthermore, the MH algorithm is one

of few rendezvous algorithms which allows for the network to hop in a secure and

random order while still allowing other radios with the seed to join the network. The

tradeoffs for using the MH algorithm are that 1) a pre-shared seed must be loaded into

all radios which will join the network and 2) all radios must have reasonably accurate

and precise clocks. The pre-shared seed requirement can be bypassed by setting a

default publicly known seed to use, but there is no longer any security inherent in the

frequency hopping of the network, which is contrary to the security concerns stated

in the objective. The clock requirement could theoretically be bypassed as well but

would exponentially slow down the operation of the algorithm as the window size

becomes the entire span of time between the generation of the pre-shared seed and

the current time.

Furthermore, the simulation testbed source code and my implementation of each

algorithm from the literature is also provided in Appendix A order to allow other

authors to implement their own rendezvous algorithms and compare them against

other known algorithms.

Possible Future Work.

There are several potential modifications that could be made to the Multihop

algorithm to support different use cases. They include the already mentioned removal

of the pre-shared seed or clock requirements. Additionally, a bias could be introduced

to the CSPRNG in order to favor channels with specific characteristics. This would

allow the algorithm to use channels with less noise more often for example, at the

cost of removing some randomness from the channel selection which could have some

negative impacts on security and is a tradeoff that could be further explored.
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Appendix A. Java Simulation Source Code

MultiHop.java.

package pavlik.net.radio.algorithms.asynchronous;

import java.nio.ByteBuffer;

import java.security.SecureRandom;

import java.util.Arrays;

import java.util.Comparator;

import java.util.Random;

import java.util.logging.Logger;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

/**

* Algorithm will be operated by a radio as such:

*

* <pre>

* {@code

* while(isSynced() == false){

* nextChannel();

* broadcastSync();

* pauseForHop();

* }

* </pre>

*

* @author John

*

*/

public class MultiHop extends RendezvousAlgorithm {

private static final Logger log =

Logger.getLogger(MultiHop.class.getName());

// Whether to use a 1/X or uniform probability distribution

private static final boolean USE_BIAS = false;

// The radios clock will be set to between the current time and the

current

// time + MAX_ROUND_OFFSET * FREQHOP_RATE

private static final int MAX_ROUND_OFFSET = 50;

// private long timeOffset;
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// private long startTime;

private int currentHopRound;

// Uncomment to override and slow down to 1 second hops for debug

// protected static long HOP_RATE = 1000;

// Number of channels in the sliding window

// private static int WINDOW_CHANNEL_COUNT = ((int) (MAX_TIME_OFFSET /

// HOP_RATE) + 1);

private static final int WINDOW_CHANNEL_COUNT = (2 * MAX_ROUND_OFFSET)

+ 1;

// A sliding time window of indices into the channels[]

int[] slidingWindow = new int[WINDOW_CHANNEL_COUNT];

// Index to the sliding window of the current estimated channel

int currentSlidingIndex;

// The index to the last update of the sliding window

int lastWindowUpdate;

public enum State {

MasterNetworkRadio, SeekingRendezvous, OperatingNetwork, Syncing;

// The count of how many hops have been made in the current sync

attempt

private long currentHop = 0;

// Number of successful hop attempts

private long hitCount = 0;

// Number of required hops to be correct in order to synchronize

private static final long REQUIRED_SYNC_HOPS = 10;

// Maximum number of hop attempts to synchronize before aborting

private static final long MAX_SYNC_HOPS = 20;

}

State state;

public Channel[] channels;

SecureRandom secureRand;

int[] bias;
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public MultiHop(String id, Channel[] channels, State startingState,

byte[] seed) {

super(id);

secureRand = new SecureRandom(seed);

currentHopRound = Math.abs(new Random().nextInt()) % MAX_ROUND_OFFSET;

if (startingState == State.SeekingRendezvous) {

currentHopRound += MAX_ROUND_OFFSET;

}

currentSlidingIndex = currentHopRound;

log.info("Starting Hop/Sliding Index: " + currentHopRound);

// Build ranking table with Channels array

this.channels = channels;

Arrays.sort(channels, new Comparator<Channel>() {

public int compare(Channel o1, Channel o2) {

// return Double.compare(o1.noise, o2.noise);

return o1.compareTo(o2);

};

});

int biasCount = (channels.length * (channels.length + 1)) / 2;

bias = new int[biasCount];

int index = 0;

for (int i = channels.length; i > 0; --i) {

for (int j = 0; j < i; ++j) {

bias[index++] = channels.length - i;

}

}

// Pre-load the sliding window with valid channels

initializeSlidingWindow(startingState);

this.state = startingState;

}

private void incrementRound() {

currentHopRound += 1;

}

@Override

public Channel nextChannel() {

incrementRound();

updateSlidingWindow();

switch (state) {

case MasterNetworkRadio:

case OperatingNetwork:

case Syncing:
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currentSlidingIndex = (currentSlidingIndex + 1) %

WINDOW_CHANNEL_COUNT;

log.info(id + " Sliding Window: " +

Arrays.toString(slidingWindow));

log.info(id + " Sliding index = " + currentSlidingIndex);

break;

case SeekingRendezvous:

// currentSlidingIndex = (currentSlidingIndex + 1) %

// (WINDOW_CHANNEL_COUNT - 1);

log.info(id + " Last window update: " + lastWindowUpdate);

log.info(id + " Sliding Window: " +

Arrays.toString(slidingWindow));

log.info(id + " Sliding index = " + currentSlidingIndex);

break;

default:

throw new RuntimeException("Undefined state: " + state);

}

return channels[slidingWindow[currentSlidingIndex]];

}

private int generateSecureRandomInt() {

byte[] bytes = new byte[4];

secureRand.nextBytes(bytes);

int nextVal = Math.abs(ByteBuffer.wrap(bytes).getInt());

if (USE_BIAS) {

return bias[nextVal % bias.length];

} else {

return nextVal;

}

}

private void initializeSlidingWindow(State startingState) {

int targetIndex;

switch (startingState) {

case MasterNetworkRadio:

targetIndex = currentHopRound;

break;

case OperatingNetwork:

case SeekingRendezvous:

case Syncing:

default:

targetIndex = WINDOW_CHANNEL_COUNT;

}

for (int i = 0; i < targetIndex; ++i) {

slidingWindow[i] = generateSecureRandomInt() % channels.length;

}
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lastWindowUpdate = targetIndex;

}

private void updateSlidingWindow() {

while (lastWindowUpdate <= currentHopRound) {

slidingWindow[lastWindowUpdate % WINDOW_CHANNEL_COUNT] =

generateSecureRandomInt() % channels.length;

lastWindowUpdate++;

}

}

@Override

public void receiveBroadcast(Channel currentChannel, String message) {

// Ignore any messages sent from this radio (every radio always hears

// its own broadcast)

if (message.startsWith(id))

return;

log.info("Message received: " + message);

switch (state) {

case MasterNetworkRadio:

break;

case OperatingNetwork:

break;

case SeekingRendezvous:

if (message.contains("0HELLO")) {

log.info("Radio " + id + " switching SYNCING state");

// currentHopRound = lastWindowUpdate;

state = State.Syncing;

state.currentHop = 0;

state.hitCount = 0;

}

break;

case Syncing:

if (message.contains("0HELLO")) {

log.info("Syncing success, up to " + state.hitCount);

state.hitCount += 1;

}

if (state.hitCount >= State.REQUIRED_SYNC_HOPS) {

log.info("Radio " + id + " switching DONE state");

state = State.OperatingNetwork;
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}

break;

default:

throw new RuntimeException("Invalid state defined: " + state);

}

}

@Override

public void broadcastSync(Channel currentChannel) {

switch (state) {

case MasterNetworkRadio:

currentChannel.broadcastMessage(id + " 0" + "HELLO on channel: " +

currentChannel.toString());

break;

case OperatingNetwork:

break;

case SeekingRendezvous:

// Don’t broadcast anything, just listen for messages from the

// master network

break;

case Syncing:

state.currentHop += 1;

if (state.currentHop > State.MAX_SYNC_HOPS) {

log.info("Radio " + id + " switching back to SEEKING state");

state = State.SeekingRendezvous;

}

break;

default:

throw new RuntimeException("Undefined state: " + state + "

received in radio: " + id);

}

}

@Override

public boolean isSynced() {

switch (state) {

case MasterNetworkRadio:

case OperatingNetwork:

return true;

case SeekingRendezvous:
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case Syncing:

return false;

default:

throw new RuntimeException("Undefined state: " + state);

}

}

}

TextInterface.java.

package pavlik.net;

import java.io.BufferedWriter;

import java.io.File;

import java.io.FileFilter;

import java.io.FileWriter;

import java.io.IOException;

import java.util.ArrayList;

import java.util.Arrays;

import java.util.List;

import java.util.logging.Logger;

import pavlik.net.Simulation.SimListener;

public class TextInterface {

private static final Logger log =

Logger.getLogger(TextInterface.class.getName());

private static final int totalRunCount = 1000;

private static final String channels = null;

// private static final String timing = null;

private static final String configDirectory = "config/asyncRandTest";

public static void main(String[] args) throws IOException {

log.fine("Begin Main");

File dir = new File(configDirectory);

File[] files = loadConfigFiles(dir);

for (File file : files) {

executeSim(file, 1);

}

}

public static File[] loadConfigFiles(File directory) {

return loadConfigFiles(directory, ".xml");
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}

public static File[] loadConfigFiles(File directory, String

acceptString) {

if (!directory.isDirectory()) {

return new File[] { directory };

}

File[] configFiles = directory.listFiles(new FileFilter() {

@Override

public boolean accept(File pathname) {

return (!pathname.isDirectory() &&

pathname.getName().endsWith(acceptString));

}

});

List<File> allConfigFiles = new

ArrayList<>(Arrays.asList(configFiles));

File[] subFolders = directory.listFiles(new FileFilter() {

@Override

public boolean accept(File pathname) {

return pathname.isDirectory();

}

});

for (File subdir : subFolders) {

File[] subConfigs = loadConfigFiles(subdir, acceptString);

allConfigFiles.addAll(Arrays.asList(subConfigs));

}

return allConfigFiles.toArray(new File[0]);

}

private static void executeSim(File configFile, int runs) {

for (int i = 0; i < totalRunCount; ++i) {

Simulation sim = ConfigurationLoader.loadConfiguration(configFile,

channels);

sim.addListener(new TextInterface().new TextListener(sim,

configFile, runs));

sim.run();

}

}

private class TextListener implements SimListener {

Simulation sim;

//final int runs;

final File configFile;

public TextListener(Simulation sim, File configFile, int runs) {

this.sim = sim;
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this.configFile = configFile;

//this.runs = runs;

}

@Override

public void complete(long timeSpent) {

String filename = "output/" + configFile.getPath() + "/" +

sim.getRendezvousString() + ".txt";

File check = new File(filename);

if (!check.exists())

try {

check.getParentFile().mkdirs();

check.createNewFile();

} catch (IOException e1) {

log.severe(e1.getMessage());

e1.printStackTrace();

}

try (final BufferedWriter writer = new BufferedWriter(new

FileWriter(filename, true))) {

writer.write(Long.toString(sim.getRounds()));

writer.newLine();

writer.flush();

} catch (IOException e) {

log.severe(e.getMessage());

e.printStackTrace();

}

}

}

}

ConfigurationLoader.java.

package pavlik.net;

import java.io.File;

import java.io.IOException;

import java.util.HashSet;

import java.util.Set;

import java.util.logging.Logger;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Document;
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import org.w3c.dom.Element;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.xml.sax.SAXException;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.AlgorithmFactory;

import pavlik.net.radio.Radio;

import pavlik.net.radio.RendezvousAlgorithm;

/**

* XML DOM Parser class that converts XML configuration files into Java

objects.

*

* Reference code used:

*

http://docs.oracle.com/cd/B28359_01/appdev.111/b28394/adx_j_parser.htm#ADXDK3000

* http://www.mkyong.com/java/how-to-read-xml-file-in-java-dom-parser/

*

* @author John

*

*/

public class ConfigurationLoader {

private static final Logger log =

Logger.getLogger(ConfigurationLoader.class

.getName());

public static String defaultConfig = "DefaultConfiguration.xml";

public static Simulation loadConfiguration(File configFile, String

channelsOverride) {

log.fine("Loading configuration");

File config;

if (configFile == null) config = new File(defaultConfig);

else config = configFile;

Document document = readXML(config);

if (document == null) return null;

Simulation simulation = loadNetworkConfiguration(document);

// if (timingOverride != null) {

// simulation.setTiming(timingOverride);

// }

loadRadiosConfiguration(document, simulation, channelsOverride);

return simulation;

}
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private static Document readXML(File xmlFile) {

try { // DOM setup

DocumentBuilderFactory dbFactory =

DocumentBuilderFactory.newInstance();

DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

Document document = dBuilder.parse(xmlFile);

document.getDocumentElement().normalize();

return document;

} catch (ParserConfigurationException | SAXException | IOException e)

{

e.printStackTrace();

log.severe("Exception! " + e.toString());

return null;

}

}

private static Simulation loadNetworkConfiguration(Document doc) {

Simulation sim = new Simulation();

NodeList networkList = doc.getElementsByTagName("network");

Node root = networkList.item(0);

if (root.getNodeType() == Node.ELEMENT_NODE) {

Element rootElement = (Element) root;

String rendezvousString = rootElement.getAttribute("algorithm");

sim.setRendezvousString(rendezvousString);

} else {

throw new RuntimeException("Root was not an element");

}

return sim;

}

private static void loadRadiosConfiguration(Document doc, Simulation

simulation,

String channelOverride) {

log.fine("Loading radios");

Set<Radio> radioSet = new HashSet<>();

NodeList nodeList = doc.getElementsByTagName("radio");

boolean first = true;

AlgorithmFactory factory = new AlgorithmFactory();

for (int nodeIndex = 0; nodeIndex < nodeList.getLength();

nodeIndex++) {

Node node = nodeList.item(nodeIndex);

if (node.getNodeType() == Node.ELEMENT_NODE) {

Element eElement = (Element) node;

String name = eElement.getAttribute("name");
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String channelString = eElement.getAttribute("channels");

if (channelOverride != null) channelString = channelOverride;

Channel[] channels =

simulation.getSpectrum().buildChannels(channelString);

RendezvousAlgorithm algorithm = factory.getAlgorithm(simulation

.getRendezvousString(), name, channels, first);

first = false;

Radio radio = new Radio(name, algorithm);

radioSet.add(radio);

} else {

throw new RuntimeException("Identified non-element node: " +

node.getNodeName()

+ " type: " + node.getNodeType());

}

}

simulation.addRadios(radioSet);

}

}

Simulation.java.

package pavlik.net;

import java.util.HashSet;

import java.util.Set;

import java.util.logging.Logger;

import pavlik.net.Channel.Spectrum;

import pavlik.net.radio.Radio;

public class Simulation {

private static final Logger log =

Logger.getLogger(Simulation.class.getName());

// public int timingType;

public Set<Radio> allRadios = new HashSet<>();

private volatile boolean running = true;

private Set<SimListener> simList = new HashSet<>();

private String rendezvousString = "";

private long clock = 0;

private long rounds = 0;

private Spectrum spectrum = new Spectrum();

public void addRadios(Set<Radio> radios) {

allRadios.addAll(radios);
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}

public void run() {

log.info("Begin simulation");

long start = System.nanoTime();

while (running) {

rounds += 1;

for (Radio radio : allRadios) {

radio.nextChannel();

}

for (Radio radio : allRadios) {

radio.sync();

}

running = false;

for (Radio radio : allRadios) {

if (!radio.isSyncComplete()) running = true;

}

if (rounds > 100000) {

running = false;

}

}

clock = System.nanoTime() - start;

log.info("End simulation");

log.info("Time spent: " + clock);

complete(clock);

}

public void stopSimulation() {

running = false;

for (Radio radio : allRadios) {

radio.stopSimulation();

}

}

private void complete(long timeSpent) {

for (SimListener simListener : simList) {

simListener.complete(timeSpent);

}

}

public boolean addListener(SimListener listener) {

return simList.add(listener);

}

public boolean removeListener(SimListener listener) {

return simList.remove(listener);

64



}

interface SimListener {

public void complete(long timeSpent);

}

public String getRendezvousString() {

return rendezvousString;

}

public long getTimeSpent() {

return clock;

}

public long getRounds() {

return rounds;

}

public Spectrum getSpectrum() {

return spectrum;

}

public void setRendezvousString(String rendezvousString) {

this.rendezvousString = rendezvousString;

}

}

Channel.java.

package pavlik.net.Channel;

import java.util.HashSet;

import java.util.Random;

import java.util.Set;

import java.util.logging.Logger;

public class Channel implements Comparable<Channel> {

private static final Logger log =

Logger.getLogger(Channel.class.getName());

final int id;

public final double noise = new Random().nextDouble();

Set<ChannelListener> listeners;
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/**

* Set the constructor protected in order to force use of the

Spectrum.buildChannels factory

* that allows string parsing

*/

Channel(int channel) {

this.id = channel;

listeners = new HashSet<>();

}

@Override

public boolean equals(Object obj) {

if (obj instanceof Channel) {

return id == ((Channel) obj).id;

}

return super.equals(obj);

}

public boolean addListener(ChannelListener listener) {

return listeners.add(listener);

}

public boolean removeListener(ChannelListener listener) {

return listeners.remove(listener);

}

public void broadcastMessage(String string) {

for (ChannelListener listener : listeners) {

log.fine("Broadcasting string: " + string + " on channel: " + id);

listener.receiveBroadcast(this, string);

}

}

@Override

public String toString() {

return Integer.toString(id);

}

@Override

public int compareTo(Channel o) {

return Integer.compare(id, o.id);

}

}
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ChannelListener.java.

package pavlik.net.Channel;

public interface ChannelListener {

void receiveBroadcast(Channel channel, String message);

}

Spectrum.java.

package pavlik.net.Channel;

import java.util.HashMap;

import java.util.Map;

import java.util.Set;

import java.util.TreeSet;

import java.util.logging.Logger;

public class Spectrum {

Map<Integer, Channel> channelSet = new HashMap<>();

private static final Logger log =

Logger.getLogger(Spectrum.class.getName());

/**

* Build a set of channels and add them to the global list and return a

set for local use

*

* @param channelString

* A string that must contain integers that are comma

separated and dash separated,

* e.g. "1-3,5".

*/

public Channel[] buildChannels(String channelString) {

log.fine("Building channels");

Set<Channel> channelSet = new TreeSet<>();

String[] channelCommaSplits = channelString.split(",");

for (String commaChannel : channelCommaSplits) {

String[] dashSplit = commaChannel.split("-");

try {

if (dashSplit.length == 1) {

int num1 = Integer.parseInt(dashSplit[0].trim());

channelSet.add(buildChannel(num1));

} else if (dashSplit.length == 2) {

int num1 = Integer.parseInt(dashSplit[0].trim());
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int num2 = Integer.parseInt(dashSplit[1].trim());

/**

* Swap if necessary so that num1 <= num2 after this

*/

if (num1 > num2) {

int tmpNum = num2;

num2 = num1;

num1 = tmpNum;

}

for (int channel = num1; channel <= num2; ++channel) {

channelSet.add(buildChannel(channel));

}

} else {

System.err.println("Unable to parse a dashSplit: ");

for (String s : dashSplit) {

System.err.println(s);

}

}

} catch (NumberFormatException ex) {

ex.printStackTrace();

}

}

return channelSet.toArray(new Channel[0]);

}

private Channel buildChannel(int channelNum) {

if (channelSet.containsKey(channelNum)) {

return channelSet.get(channelNum);

} else {

Channel channel = new Channel(channelNum);

channelSet.put(channelNum, channel);

return channel;

}

}

// /**

// * Get a set of all channels in the spectrum

// *

// * @return a Set of Channel

// */

// public Set<Channel> getChannels() {

// return channelSet;

// }

}
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AlgorithmFactory.java.

package pavlik.net.radio;

import java.security.NoSuchAlgorithmException;

import java.security.SecureRandom;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.algorithms.asynchronous.EnhancedJumpStay;

import pavlik.net.radio.algorithms.asynchronous.JumpStay;

import pavlik.net.radio.algorithms.asynchronous.ModifiedModularClock;

import pavlik.net.radio.algorithms.asynchronous.MultiHop;

import pavlik.net.radio.algorithms.asynchronous.RandomAlgorithm;

import pavlik.net.radio.algorithms.asynchronous.ShortSequenceBased;

import pavlik.net.radio.algorithms.synchronous.DRSEQ;

import pavlik.net.radio.algorithms.synchronous.GeneratedOrthogonalSequence;

import pavlik.net.radio.algorithms.synchronous.ModularClock;

public class AlgorithmFactory {

private static byte[] seed;

private static final int SEED_SIZE = 512;

public AlgorithmFactory() {

try {

seed = SecureRandom.getInstanceStrong().generateSeed(SEED_SIZE);

} catch (NoSuchAlgorithmException e) {

e.printStackTrace();

}

}

public RendezvousAlgorithm getAlgorithm(String rendezvousString, String

id, Channel[] channels,

boolean firstRadio) {

switch (rendezvousString) {

case "random":

return new RandomAlgorithm(id, channels);

case "orthogonal":

return new GeneratedOrthogonalSequence(id, channels);

case "mc":

return new ModularClock(id, channels);

case "mmc":

return new ModifiedModularClock(id, channels);

case "jumpstay":

case "js":

return new JumpStay(id, channels);

case "enhancedjumpstay":
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case "ejs":

return new EnhancedJumpStay(id, channels);

case "drseq":

return new DRSEQ(id, channels);

case "ssb":

return new ShortSequenceBased(id, channels);

case "fh":

return new MultiHop(id, channels,

firstRadio ? MultiHop.State.MasterNetworkRadio :

MultiHop.State.SeekingRendezvous, seed);

default:

return null;

}

}

}

Radio.java.

package pavlik.net.radio;

import java.util.logging.Logger;

import pavlik.net.Channel.Channel;

public class Radio {

private static final Logger log =

Logger.getLogger(Radio.class.getName());

String id;

volatile boolean running = true;

Channel currentChannel;

public RendezvousAlgorithm algorithm;

public Radio(String name, RendezvousAlgorithm algorithm) {

log.info("Radio created: " + name);

this.id = name;

this.algorithm = algorithm;

}

public void stopSimulation() {

running = false;

}

// public void nextStep() {
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// if (running) {

// nextChannel();

// algorithm.broadcastSync(currentChannel);

// algorithm.pauseForHop();

// }

// }

public void sync() {

algorithm.broadcastSync(currentChannel);

}

public void nextChannel() {

if (currentChannel != null) {

currentChannel.removeListener(algorithm);

}

currentChannel = algorithm.nextChannel();

log.info(id + " now on channel :" + currentChannel);

currentChannel.addListener(algorithm);

}

public boolean isSyncComplete() {

return algorithm.isSynced();

}

}

RendezvousAlgorithm.java.

package pavlik.net.radio;

import java.util.logging.Logger;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.protocol.RadioProtocol;

public abstract class RendezvousAlgorithm implements RadioProtocol {

private static final Logger log =

Logger.getLogger(RendezvousAlgorithm.class.getName());

boolean synced = false;

protected String id;

public abstract Channel nextChannel();

public RendezvousAlgorithm(String id) {
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this.id = id;

}

@Override

public void receiveBroadcast(Channel currentChannel, String message) {

if (message.startsWith(id))

return;

log.info("Message received: " + message);

if (message.contains("0HELLO")) {

currentChannel.broadcastMessage(id + " 1" + "ACKHELLO on channel:

" + currentChannel.toString());

}

if (message.contains("1ACKHELLO")) {

currentChannel.broadcastMessage(id + " 2ACK");

synced = true;

}

if (message.contains("2ACK")) {

synced = true;

}

}

@Override

public void broadcastSync(Channel currentChannel) {

currentChannel.broadcastMessage(id + " 0" + "HELLO on channel: " +

currentChannel.toString());

}

public boolean isSynced() {

return synced;

}

}

EnhancedJumpStay.java.

package pavlik.net.radio.algorithms.asynchronous;

import java.math.BigInteger;

import java.util.Random;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

public class EnhancedJumpStay extends RendezvousAlgorithm {

Channel[] channels;
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int prime;

int r0, i0, t;

Random rand = new Random();

public EnhancedJumpStay(String id, Channel[] channels) {

super(id);

this.channels = channels;

this.prime =

BigInteger.valueOf(channels.length).nextProbablePrime().intValue();

this.r0 = rand.nextInt(channels.length) + 1;

this.i0 = rand.nextInt(prime) + 1;

this.t = 0;

}

@Override

public Channel nextChannel() {

int n = Math.floorDiv(t, (4 * prime));

int i = ((i0 + n - 1) % prime) + 1;

Channel channel = EJSHopping(i, t);

t += 1;

return channel;

}

private Channel EJSHopping(int i, int t) {

t %= 4 * prime;

int j;

if (t < 3 * prime) {

j = ((i + t * r0 - 1) % prime) + 1;

} else {

j = r0;

}

if (j >= channels.length) j %= channels.length;

return channels[j];

}

}

JumpStay.java.

package pavlik.net.radio.algorithms.asynchronous;

import java.math.BigInteger;

import java.util.Random;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;
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public class JumpStay extends RendezvousAlgorithm {

Channel[] channels;

int prime;

int r0, i0, t;

Random rand = new Random();

public JumpStay(String id, Channel[] channels) {

super(id);

this.channels = channels;

this.prime =

BigInteger.valueOf(channels.length).nextProbablePrime().intValue();

this.r0 = rand.nextInt(channels.length) + 1;

this.i0 = rand.nextInt(prime) + 1;

this.t = 0;

}

@Override

public Channel nextChannel() {

int n = Math.floorDiv(t, (3 * prime));

int r = ((r0 + n - 1) % channels.length) + 1;

int m = Math.floorDiv(t, 3 * channels.length * prime);

int i = ((i0 + m - 1) % prime) + 1;

Channel channel = JSHopping(r, i, t);

t += 1;

return channel;

}

private Channel JSHopping(int r, int i, int t) {

t %= 3 * prime;

int j;

if (t < 2 * prime) {

j = ((i + t * r - 1) % prime) + 1;

} else {

j = r;

}

if (j > channels.length) j = ((j - 1) % channels.length) + 1;

return channels[j - 1];

}

}

ModifiedModularClock.java.

package pavlik.net.radio.algorithms.asynchronous;
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import java.util.ArrayList;

import java.util.List;

import java.util.Random;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

public class ModifiedModularClock extends RendezvousAlgorithm {

Channel[] channels;

int index;

int prime;

int rate;

int timeCount = 0;

static Random rand = new Random();

public ModifiedModularClock(String id, Channel[] channels) {

super(id);

this.channels = channels;

this.index = rand.nextInt(channels.length);

this.prime = randomPrime(channels.length, channels.length * 2);

this.rate = rand.nextInt(channels.length-2) + 2;

}

@Override

public Channel nextChannel() {

timeCount += 1;

if (timeCount > 2 * (prime * prime)) {

this.prime = randomPrime(channels.length, channels.length * 2);

this.rate = rand.nextInt(channels.length - 2) + 2;

timeCount = 0;

}

index += rate;

index %= prime;

if (index < channels.length) {

return channels[index];

} else {

return channels[rand.nextInt(channels.length)];

}

}

public static int randomPrime(int start, int end) {

List<Integer> primes = new ArrayList<>();

for (int current = start; current <= end; current++) {

long sqr_root = (long) Math.sqrt(current);
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boolean is_prime = true;

for (long i = 2; i <= sqr_root; i++) {

if (current % i == 0) {

is_prime = false; // Current is not prime.

break;

}

}

if (is_prime) {

primes.add(current);

}

}

return primes.get(rand.nextInt(primes.size()));

}

}

RandomAlgorithm.java.

package pavlik.net.radio.algorithms.asynchronous;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

public class RandomAlgorithm extends RendezvousAlgorithm {

Channel[] channels;

java.util.Random rand = new java.util.Random();

public RandomAlgorithm(String id, Channel[] channels) {

super(id);

this.channels = channels;

}

@Override

public Channel nextChannel() {

return channels[rand.nextInt(channels.length)];

}

}

ShortSequenceBased.java.

package pavlik.net.radio.algorithms.asynchronous;
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import java.util.Random;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

public class ShortSequenceBased extends RendezvousAlgorithm {

private Channel[] channels;

private int index;

private Random rand = new Random();

public ShortSequenceBased(String id, Channel[] channels) {

super(id);

this.channels = channels;

this.index = rand.nextInt(channels.length);

}

@Override

public Channel nextChannel() {

index += 1;

if (index >= channels.length * 2) {

index = 0;

}

if (0 <= index && index < channels.length) {

return channels[index];

} else {

return channels[channels.length - 1 - index % channels.length];

}

}

}

DRSEQ.java.

package pavlik.net.radio.algorithms.synchronous;

import java.util.Random;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

public class DRSEQ extends RendezvousAlgorithm {

Channel[] channels;

int index;

Random rand = new Random();
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public DRSEQ(String id, Channel[] channels) {

super(id);

this.channels = channels;

this.index = rand.nextInt(channels.length);

}

@Override

public Channel nextChannel() {

index += 1;

index %= 2*channels.length + 1;

if (index < channels.length) {

return channels[index];

} else if (index == channels.length) return

channels[rand.nextInt(channels.length)];

else return channels[2 * channels.length - index];

}

}

GeneratedOrthogonalSequence.java.

package pavlik.net.radio.algorithms.synchronous;

import java.util.Arrays;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

/**

* Only guaranteed under synchronous model

* @author jpavlik

*

*/

public class GeneratedOrthogonalSequence extends RendezvousAlgorithm {

Channel[] channels;

java.util.Random rnd = new java.util.Random();

int index;

public GeneratedOrthogonalSequence(String id, Channel[] channels) {

super(id);

Arrays.sort(channels);

this.channels = buildSequence(channels);

this.index = rnd.nextInt(channels.length);
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}

@Override

public Channel nextChannel() {

return channels[index++ % channels.length];

}

public Channel[] buildSequence(Channel[] observedChannels) {

int length = observedChannels.length;

Channel[] channelSequence = new Channel[length * length + length];

int seqIndex = 0;

for (int i = 0; i < length; ++i) {

channelSequence[seqIndex++] = observedChannels[i];

for (int j = 0; j < length; ++j) {

channelSequence[seqIndex++] = observedChannels[j];

}

}

return channelSequence;

}

}

ModularClock.java.

package pavlik.net.radio.algorithms.synchronous;

import java.math.BigInteger;

import java.util.Random;

import pavlik.net.Channel.Channel;

import pavlik.net.radio.RendezvousAlgorithm;

public class ModularClock extends RendezvousAlgorithm {

Channel[] channels;

int index;

int prime;

int rate;

int timeCount = 0;

Random rand = new Random();

public ModularClock(String id, Channel[] channels) {

super(id);

this.channels = channels;

this.prime = BigInteger.valueOf(channels.length).nextProbablePrime()
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.intValue();

this.index = rand.nextInt(channels.length);

this.rate = rand.nextInt(channels.length - 2) +2;

}

@Override

public Channel nextChannel() {

timeCount += 1;

if (timeCount > 2 * prime) {

rate = rand.nextInt(prime);

timeCount = 0;

}

index += rate;

index %= prime;

if (index < channels.length) {

return channels[index];

} else {

return channels[index % channels.length];

}

}

}

RadioProtocol.java.

package pavlik.net.radio.protocol;

import pavlik.net.Channel.ChannelListener;

import pavlik.net.Channel.Channel;

public interface RadioProtocol extends ChannelListener {

public Channel nextChannel();

public void receiveBroadcast(Channel channel, String message);

public void broadcastSync(Channel channel);

public boolean isSynced();

}
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Appendix B. GNU Radio Source Code

channel selector.h.

#ifndef INCLUDED_MULTIHOP_CHANNEL_SELECTOR_IMPL_H

#define INCLUDED_MULTIHOP_CHANNEL_SELECTOR_IMPL_H

#include <multihop/channel_selector.h>

namespace gr {

namespace multihop {

class channel_selector_impl : public channel_selector

{

private:

std::vector<int> channels;

public:

channel_selector_impl(int num_channels);

~channel_selector_impl();

// Where all the action really happens

int work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_CHANNEL_SELECTOR_IMPL_H */

channel selector.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "channel_selector_impl.h"

namespace gr {

namespace multihop {

channel_selector::sptr
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channel_selector::make(int fft)

{

return gnuradio::get_initial_sptr

(new channel_selector_impl(fft));

}

/*

* The private constructor

*/

channel_selector_impl::channel_selector_impl(int num_channels) :

gr::sync_block("channel_selector",

gr::io_signature::make(1, 1, sizeof(int)),

gr::io_signature::make(1, 1, sizeof(int)))

{

for(int i = 0; i < num_channels; ++i){

channels.push_back(i);

}

}

/*

* Our virtual destructor.

*/

channel_selector_impl::~channel_selector_impl(){

}

int

channel_selector_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

const int *in = (const int *) input_items[0];

int *out = (int *) output_items[0];

for(int i = 0; i < noutput_items; ++i){

out[i] = channels[in[i] % channels.size()];

}

// Tell runtime system how many input items we consumed on

// each input stream.

consume_each (noutput_items);

// Tell runtime system how many output items we produced.

return noutput_items;

}
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} /* namespace multihop */

} /* namespace gr */

channel to freq.h.

#ifndef INCLUDED_MULTIHOP_CHANNEL_TO_FREQ_IMPL_H

#define INCLUDED_MULTIHOP_CHANNEL_TO_FREQ_IMPL_H

#include <multihop/channel_to_freq.h>

namespace gr {

namespace multihop {

class channel_to_freq_impl : public channel_to_freq

{

private:

double fft_bin_size;

double fft_channel_ratio;

int round;

public:

channel_to_freq_impl(int fft_size, double sample_rate, int

num_channels);

~channel_to_freq_impl();

// Where all the action really happens

int work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_CHANNEL_TO_FREQ_IMPL_H */

channel to freq.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>
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#include "channel_to_freq_impl.h"

namespace gr {

namespace multihop {

channel_to_freq::sptr

channel_to_freq::make(int fft_size, double sample_rate, int

num_channels)

{

return gnuradio::get_initial_sptr

(new channel_to_freq_impl(fft_size, sample_rate, num_channels));

}

/*

* The private constructor

*/

channel_to_freq_impl::channel_to_freq_impl(int fft_size, double

sample_rate, int num_channels)

: gr::sync_block("channel_to_freq",

gr::io_signature::make(1, 1, sizeof(int)),

gr::io_signature::make(1, 1, sizeof(float)))

{

round = 0;

fft_bin_size = sample_rate / fft_size;

fft_channel_ratio = (fft_size / 2.0) / (double)num_channels;

std::cout << "fft_channel_ratio = " << fft_channel_ratio << std::endl;

}

/*

* Our virtual destructor.

*/

channel_to_freq_impl::~channel_to_freq_impl()

{

}

int

channel_to_freq_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

const int *in = (const int *) input_items[0];

float *out = (float *) output_items[0];

for(int i = 0; i < noutput_items; ++i){

int fft_bin = (in[i] * fft_channel_ratio + fft_channel_ratio *

0.5);
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out[i] = fft_bin * fft_bin_size; //Convert to frequency

std::cout << "Round " << round++ << " ";

std::cout << "Channel: " << in[i] << " & Bin: " << fft_bin << " &

Freq: " << out[i] << std::endl;

}

return noutput_items;

}

} /* namespace multihop */

} /* namespace gr */

csprng.h.

#ifndef INCLUDED_MULTIHOP_CSPRNG_IMPL_H

#define INCLUDED_MULTIHOP_CSPRNG_IMPL_H

#include <multihop/csprng.h>

#include <limits.h>

#include <ctime>

#define BILLION 1000000000L

namespace gr {

namespace multihop {

class csprng_impl : public csprng

{

private:

uint64_t counter;

const static uint64_t BASE_TIME = 12476075133901;

uint64_t last_update;

uint64_t ns_per_hop;

uint64_t samps_per_hop;

uint64_t samples;

uint64_t time_sync();

public:

csprng_impl(int seed, double freq_rate, double samp_rate);

~csprng_impl();

uint64_t next();

// Where all the action really happens

int work(int noutput_items,
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gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

csprng.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "csprng_impl.h"

namespace gr {

namespace multihop {

csprng::sptr

csprng::make(int seed, double freq_rate, double samp_rate)

{

return gnuradio::get_initial_sptr

(new csprng_impl(seed, freq_rate, samp_rate));

}

/*

* The private constructor

*/

csprng_impl::csprng_impl(int seed, double freq_rate, double samp_rate)

: gr::sync_block("csprng",

gr::io_signature::make(0, 0, 0),

gr::io_signature::make(1, 1, sizeof(int)))

{

srand(seed);

ns_per_hop = BILLION/freq_rate;

counter = 0;

//last_update = BASE_TIME;

last_update = 0;

time_sync();

}

/*

* Our virtual destructor.

*/
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csprng_impl::~csprng_impl()

{

}

uint64_t csprng_impl::time_sync(){

//struct timespec now;

//clock_gettime(CLOCK_MONOTONIC, &now);

//uint64_t now_ns = (BILLION * (now.tv_sec) + now.tv_nsec);

//uint64_t elapsed_nanoseconds = now_ns - last_update;

//uint64_t elapsed_hops = elapsed_nanoseconds / ns_per_hop;

//if(elapsed_hops > 0){

// last_update = now_ns;

// for(uint64_t i = 0; i < elapsed_hops; ++i){

// counter += 1;

// }

//}

std::cout<< "CSPRNG: " << counter << std::endl;

return counter;

}

uint64_t csprng_impl::next(){

//counter += 1;

//return counter;

return rand();

}

int

csprng_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

int *out = (int *) output_items[0];

for(int i = 0; i < noutput_items; ++i){

out[i] = (int)next();

}

// Tell runtime system how many output items we produced.

return noutput_items;

}

} /* namespace multihop */

} /* namespace gr */

freq to channel.h.
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#ifndef INCLUDED_MULTIHOP_FREQ_TO_CHANNEL_IMPL_H

#define INCLUDED_MULTIHOP_FREQ_TO_CHANNEL_IMPL_H

#include <multihop/freq_to_channel.h>

#include <cmath>

namespace gr {

namespace multihop {

class freq_to_channel_impl : public freq_to_channel

{

private:

double channel_fft_ratio;

public:

freq_to_channel_impl(int fft_size, double sample_rate, int

num_channels);

~freq_to_channel_impl();

// Where all the action really happens

int work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_FREQ_TO_CHANNEL_IMPL_H */

freq to channel.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "freq_to_channel_impl.h"

namespace gr {

namespace multihop {

freq_to_channel::sptr
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freq_to_channel::make(int fft_size, double sample_rate, int

num_channels)

{

return gnuradio::get_initial_sptr

(new freq_to_channel_impl(fft_size, sample_rate, num_channels));

}

/*

* The private constructor

*/

freq_to_channel_impl::freq_to_channel_impl(int fft_size, double

sample_rate, int num_channels)

: gr::sync_block("freq_to_channel",

gr::io_signature::make(1, 1, sizeof(int)),

gr::io_signature::make(1, 1, sizeof(int)))

{

channel_fft_ratio = num_channels / ((double)fft_size / 2);

std::cout << "Channel_fft_ratio = " << channel_fft_ratio << std::endl;

}

/*

* Our virtual destructor.

*/

freq_to_channel_impl::~freq_to_channel_impl()

{

}

int

freq_to_channel_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

const int *in = (const int *) input_items[0];

int *out = (int *) output_items[0];

for(int i = 0; i < noutput_items; ++i){

out[i] = round(in[i] * channel_fft_ratio);

//std::cout << "Input freq to channel: " << in[i] << std::endl;

}

// Tell runtime system how many output items we produced.

return noutput_items;

}

} /* namespace multihop */

89



} /* namespace gr */

freqhop signal source.cc.

#ifndef INCLUDED_MULTIHOP_FREQHOP_SIGNAL_SOURCE_IMPL_H

#define INCLUDED_MULTIHOP_FREQHOP_SIGNAL_SOURCE_IMPL_H

#include <multihop/freqhop_signal_source.h>

#include <cmath>

namespace gr {

namespace multihop {

class freqhop_signal_source_impl : public freqhop_signal_source

{

private:

double d_sampling_freq;

double d_ampl;

double d_frequency;

double d_freqhop;

gr_complex d_offset;

unsigned long time;

unsigned int interp_rate;

const static double D_PI =

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899862803482534;

public:

freqhop_signal_source_impl(double sampling_freq, double ampl,

gr_complex offset, double freqhop_rate);

~freqhop_signal_source_impl();

// Where all the action really happens

int work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_FREQHOP_SIGNAL_SOURCE_IMPL_H */
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freqhop signal source.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "freqhop_signal_source_impl.h"

namespace gr {

namespace multihop {

freqhop_signal_source::sptr

freqhop_signal_source::make(double sampling_freq, double ampl,

gr_complex offset, double freqhop_rate)

{

return gnuradio::get_initial_sptr

(new freqhop_signal_source_impl(sampling_freq, ampl, offset,

freqhop_rate));

}

/*

* The private constructor

*/

freqhop_signal_source_impl::freqhop_signal_source_impl(double

sampling_freq, double ampl, gr_complex offset, double freqhop_rate)

: gr::sync_interpolator("freqhop_signal_source",

gr::io_signature::make(1, 1, sizeof(float)),

gr::io_signature::make(1, 1, sizeof(gr_complex)),

round(sampling_freq / freqhop_rate)),

d_sampling_freq(sampling_freq), d_ampl(ampl), d_offset(offset)

{

time = 0;

interp_rate = round(sampling_freq / freqhop_rate);

}

/*

* Our virtual destructor.

*/

freqhop_signal_source_impl::~freqhop_signal_source_impl()

{

}

int

freqhop_signal_source_impl::work(int num_output_items,

gr_vector_const_void_star &input_items,
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gr_vector_void_star &output_items)

{

const float *in = (const float *) input_items[0];

gr_complex *optr = (gr_complex*) output_items[0];

int ninput_items = num_output_items / interp_rate;

for(int i = 0; i < ninput_items; ++i){

float freq = in[i];

// std::cout << "Freq: " << freq << std::endl;

for(int j = i; j < (i+1) * interp_rate; ++j){

double val = 2 * D_PI * freq * time / d_sampling_freq;

time += 1;

optr[j] = gr_complex(d_ampl*cos(val), d_ampl*sin(val));

if(d_offset != gr_complex(0,0)){

optr[j] += d_offset;

}

}

}

return num_output_items;

}

} /* namespace multihop */

} /* namespace gr */

max cf.h.

#ifndef INCLUDED_MULTIHOP_MAX_CF_IMPL_H

#define INCLUDED_MULTIHOP_MAX_CF_IMPL_H

#include <multihop/max_cf.h>

namespace gr {

namespace multihop {

class max_cf_impl : public max_cf

{

private:

int vec_size;

public:

max_cf_impl(int vec_size);

~max_cf_impl();

//Find the magnitude squared (real^2 + imag^2)) of a complex number
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float magnitude2(gr_complex val);

// Where all the action really happens

int work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_MAX_CF_IMPL_H */

max cf.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "max_cf_impl.h"

namespace gr {

namespace multihop {

max_cf::sptr

max_cf::make(int vec_size)

{

return gnuradio::get_initial_sptr

(new max_cf_impl(vec_size));

}

/*

* The private constructor

*/

max_cf_impl::max_cf_impl(int vsize)

: gr::sync_block("max_cf",

gr::io_signature::make(1, 1, vsize*sizeof(gr_complex)),

gr::io_signature::make(1, 1, sizeof(int)))

{

vec_size = vsize;

}

/*

* Our virtual destructor.
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*/

max_cf_impl::~max_cf_impl()

{

}

int

max_cf_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

const gr_complex *in = (const gr_complex *) input_items[0];

int *out = (int *) output_items[0];

for(int i = 0; i < noutput_items; ++i){

int start = i * vec_size;

float max_val = magnitude2(in[start + 1]);

int max_loc = start;

for(int j = start; j < start+vec_size; ++j){

float new_max = magnitude2(in[j]);

int new_loc = j - (i*vec_size);

if(new_max > max_val){

max_val = new_max;

max_loc = new_loc;

}

}

//std::cout << "Max Loc = " << max_loc << std::endl;

out[i] = max_loc;

}

// Tell runtime system how many output items we produced.

return noutput_items;

}

float max_cf_impl::magnitude2(gr_complex val){

return val.real()*val.real() + val.imag()*val.imag();

}

} /* namespace multihop */

} /* namespace gr */

mode ii.h.

#ifndef INCLUDED_MULTIHOP_MODE_II_IMPL_H

#define INCLUDED_MULTIHOP_MODE_II_IMPL_H
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#include <multihop/mode_ii.h>

#include <map>

namespace gr {

namespace multihop {

class mode_ii_impl : public mode_ii

{

private:

int i_size;

public:

mode_ii_impl(int size);

~mode_ii_impl();

// Where all the action really happens

int work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_MODE_II_IMPL_H */

mode ii.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "mode_ii_impl.h"

namespace gr {

namespace multihop {

mode_ii::sptr

mode_ii::make(int size)

{

return gnuradio::get_initial_sptr

(new mode_ii_impl(size));

}
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/*

* The private constructor

*/

mode_ii_impl::mode_ii_impl(int size)

: gr::sync_decimator("mode_ii",

gr::io_signature::make(1, 1, sizeof(int)),

gr::io_signature::make(1, 1, sizeof(int)), size),

i_size(size)

{}

/*

* Our virtual destructor.

*/

mode_ii_impl::~mode_ii_impl()

{

}

int

mode_ii_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

const int *in = (const int *) input_items[0];

int *out = (int *) output_items[0];

for(int i = 0; i < noutput_items; ++i){

int start = i * i_size;

std::map<int, int> map;

for(int j = start; j < start + i_size; ++j){

if(map.count(in[j]) == 0) map[in[j]] = 1;

else map[in[j]] = map[in[j]] + 1;

}

int max_item = -1;

int max_mode = -1;

for (std::map<int,int>::iterator it = map.begin(); it !=

map.end(); ++it) {

//std::cout << "Max_mode values: " << it->first << " = " <<

it->second << std::endl;

if(it->second > max_mode){

max_mode = it->second;

max_item = it->first;

}

}

out[i] = max_item;
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//std::cout << "Max_mode: " << max_item << " = " << max_mode <<

std::endl;

}

// Tell runtime system how many output items we produced.

return noutput_items;

}

} /* namespace multihop */

} /* namespace gr */

multihop rendezvous.h.

#ifndef INCLUDED_MULTIHOP_MULTIHOP_RENDEZVOUS_IMPL_H

#define INCLUDED_MULTIHOP_MULTIHOP_RENDEZVOUS_IMPL_H

#include <multihop/multihop_rendezvous.h>

#include "csprng_impl.h"

#include <vector>

#include <stdexcept>

namespace gr {

namespace multihop {

enum State { SEEKING, SYNCING, DONE };

class multihop_rendezvous_impl : public multihop_rendezvous

{

private:

int max_window_size;

int num_channels;

std::vector<int> sliding_window;

csprng_impl* rng;

int last_window_update;

int hop_round;

int sliding_index;

int search_rate;

int finished;

State state;

int syncing_count;

int syncing_success;

// Number of required hops to be correct in order to synchronize

const static long REQUIRED_SYNC_HOPS = 10;

// Maximum number of hop attempts to synchronize before aborting

const static long MAX_SYNC_HOPS = 20;
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void update_sliding_window();

public:

multihop_rendezvous_impl(int seed, double freq_rate, double

samp_rate, int num_channels, int window_size, int search_speed);

~multihop_rendezvous_impl();

int next_channel();

// Where all the action really happens

int work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_MULTIHOP_RENDEZVOUS_IMPL_H */

multihop rendezvous.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "multihop_rendezvous_impl.h"

namespace gr {

namespace multihop {

multihop_rendezvous::sptr

multihop_rendezvous::make(int seed, double freq_rate, double

samp_rate, int num_channels, int window_size, int search_speed)

{

return gnuradio::get_initial_sptr

(new multihop_rendezvous_impl(seed, freq_rate, samp_rate,

num_channels, window_size, search_speed));

}

/*

* The private constructor

*/
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multihop_rendezvous_impl::multihop_rendezvous_impl(int seed, double

freq_rate, double samp_rate, int nchannels, int window_size, int

search_speed)

: gr::sync_block("multihop_rendezvous",

gr::io_signature::make(1, 1, sizeof(int)),

gr::io_signature::make(0, 0, 0))

{

max_window_size = window_size;

sliding_window = std::vector<int>(max_window_size);

rng = new csprng_impl(seed, freq_rate, samp_rate);

num_channels = nchannels;

search_rate = search_speed;

sliding_index = 0;

last_window_update = 0;

hop_round = 0;

state = SEEKING;

syncing_count = 0;

syncing_success = 0;

for(int i = 0; i < window_size / 2; ++i){

next_channel();

}

}

/*

* Our virtual destructor.

*/

multihop_rendezvous_impl::~multihop_rendezvous_impl()

{

delete rng;

}

int

multihop_rendezvous_impl::work(int noutput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

const int *in = (const int *) input_items[0];

for(int i = 0; i < noutput_items; ++i){

int received_channel = in[i];

//if(received_channel >= num_channels){

//std::cout << "Decrementing " << received_channel << std::endl;

// received_channel = received_channel - num_channels;
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//}

int expected_channel = next_channel();

if(received_channel != expected_channel){

std::cout << "Expected " << expected_channel << " but got

" << received_channel << std::endl;

//if(state == DONE) state = SEEKING;

}

if(state == SYNCING){

syncing_count++;

if(received_channel == expected_channel){

syncing_success += 1;

std::cout << "SYNCING SUCCESS: " << syncing_success << " / "

<< syncing_count << std::endl;

}

if(syncing_success >= REQUIRED_SYNC_HOPS){

state = DONE;

finished = hop_round;

}

if(syncing_count > MAX_SYNC_HOPS){

state = SEEKING;

std::cout << "ABORT SYNCING" << std::endl;

}

}

else if(state == SEEKING){

if(received_channel == expected_channel){

std::cout << "BEGIN SYNCING" << std::endl;

state = SYNCING;

syncing_count = 0;

syncing_success = 0;

}

}

else if(state == DONE){

std::cout << "SYNC COMPLETE AT " << finished << std::endl;

}

}

//pauseForHop();

return noutput_items;

}

void multihop_rendezvous_impl::update_sliding_window() {

while (last_window_update <= hop_round) {
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sliding_window[last_window_update % max_window_size] =

rng->next() % num_channels;

last_window_update++;

}

}

int multihop_rendezvous_impl::next_channel(){

hop_round += 1;

std::cout << "Round " << hop_round << " ";

update_sliding_window();

switch (state) {

case DONE:

case SYNCING:

sliding_index = (sliding_index + 1) % max_window_size;

break;

case SEEKING:

if(hop_round % search_rate != 0)

sliding_index = (sliding_index + 1) % max_window_size;

break;

default:

throw std::invalid_argument("Invalid state received");

}

/*std::cout << "Sliding Window: ";

for(int i = 0; i < max_window_size; ++i){

std::cout << sliding_window[i];

if(i == sliding_index) std::cout << "*";

std::cout << ", ";

}

std::cout << std::endl;*/

return sliding_window[sliding_index];

}

} /* namespace multihop */

} /* namespace gr */

modular clock rendezvous.h.

#ifndef INCLUDED_MULTIHOP_MODULAR_CLOCK_RENDEZVOUS_IMPL_H

#define INCLUDED_MULTIHOP_MODULAR_CLOCK_RENDEZVOUS_IMPL_H

#include <multihop/modular_clock_rendezvous.h>

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <time.h>
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namespace gr {

namespace multihop {

class modular_clock_rendezvous_impl : public modular_clock_rendezvous

{

private:

int num_channels;

bool transmitter;

int index;

int prime;

int rate;

int round;

int count;

public:

modular_clock_rendezvous_impl(bool transmitter, int num_channels);

~modular_clock_rendezvous_impl();

// Where all the action really happens

void forecast (int noutput_items, gr_vector_int

&ninput_items_required);

int general_work(int noutput_items,

gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items);

unsigned int getSeed();

int gcd(int a, int b);

bool primeCheck(int x);

int primeFind(int x, int bound);

int next_channel();

};

} // namespace multihop

} // namespace gr

#endif /* INCLUDED_MULTIHOP_MODULAR_CLOCK_RENDEZVOUS_IMPL_H */
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modular clock rendezvous.cc.

#ifdef HAVE_CONFIG_H

#include "config.h"

#endif

#include <gnuradio/io_signature.h>

#include "modular_clock_rendezvous_impl.h"

namespace gr {

namespace multihop {

modular_clock_rendezvous::sptr

modular_clock_rendezvous::make(bool transmitter, int num_channels)

{

return gnuradio::get_initial_sptr

(new modular_clock_rendezvous_impl(transmitter, num_channels));

}

/*

* The private constructor

*/

modular_clock_rendezvous_impl::modular_clock_rendezvous_impl(bool

p_transmitter, int p_nchannels)

: gr::block("modular_clock_rendezvous",

gr::io_signature::make(0, 1, sizeof(int)),

gr::io_signature::make(0, 1, sizeof(int)))

{

srand(getSeed());

transmitter = p_transmitter;

num_channels = p_nchannels;

round = 0;

prime = 0;

while(prime == 0){

prime = primeFind(num_channels, num_channels * 2);

}

index = rand() % num_channels;

rate = (rand() % (num_channels - 2)) + 2;

count = 0;

}

/*

* Our virtual destructor.

*/

modular_clock_rendezvous_impl::~modular_clock_rendezvous_impl()
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{

}

void

modular_clock_rendezvous_impl::forecast (int noutput_items,

gr_vector_int &ninput_items_required)

{

if(transmitter){

ninput_items_required[0] = 0;

}

else{

ninput_items_required[0] = noutput_items;

}

}

unsigned int

modular_clock_rendezvous_impl::getSeed(){

FILE *file = fopen("/dev/random", "r");

unsigned int temp;

int size = fread(&temp, 4, 1, file);

fclose(file);

return temp;

}

int modular_clock_rendezvous_impl::gcd(int a, int b){

int c;

while(true){

c = a%b;

if(c==0) return b;

a = b;

b = c;

}

}

bool modular_clock_rendezvous_impl::primeCheck(int x){

for(int i = 2; i <= int(sqrt(x)); ++i){

if(gcd(i,x) > 1) return false;

}

return true;

}

int modular_clock_rendezvous_impl::primeFind(int x, int bound){

while(x < bound){

if(primeCheck(x)) return x;

x++;

}
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return 0;

}

int

modular_clock_rendezvous_impl::general_work (int noutput_items,

gr_vector_int &ninput_items,

gr_vector_const_void_star &input_items,

gr_vector_void_star &output_items)

{

if(transmitter){

int *out = (int *) output_items[0];

out[0] = next_channel();

return 1;

}else{

const int *in = (const int *) input_items[0];

for(int i = 0; i < ninput_items[0]; ++i){

int received_channel = in[i];

int guessed_channel = next_channel();

if(received_channel == guessed_channel){

std::cout << "DONE AT " << count << std::endl;

}

}

consume_each (ninput_items[0]);

return 0;

}

}

int modular_clock_rendezvous_impl::next_channel(){

round += 1;

count += 1;

if(round > 2 * prime){

round = 0;

prime = 0;

while(prime == 0){

prime = primeFind((rand() % num_channels) + num_channels,

num_channels * 2);

}

rate = (rand() % (num_channels - 2)) + 2;

}

index = fmod((index + rate), prime);

if(index >= num_channels){

srand(getSeed());

index = rand() % num_channels;

}
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return index;

}

} /* namespace multihop */

} /* namespace gr */
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